Solar Radiation Monitoring Laboratory (SRML)#

The Solar Radiation Monitoring Laboratory (SRML) at the University of Oregon has been providing solar radiation data for the Northwestern United States since 1975. The SRML monitoring station network consists of both high-quality stations that measure all three irradiance components at a 1-minute resolution, as well as stations with low quality instruments that only log measurements hourly. A full list of the 42 stations (including discontinued stations) can be found on the SRML website.

The high-quality SRML stations can be retrieved from the SolarStations’ station listing and are shown below.

Hide code cell content
import pandas as pd

stations = pd.read_csv('solarstations.csv', sep=';', encoding='latin1')
stations = stations[stations['Network'].str.contains('SRML')]
stations
Station full name Abbreviation State Country Latitude Longitude Elevation Time period Network Comment URL Tier 2 Instrument
80 Portland NaN Oregon USA 45.510 -122.690 70.0 2011- SRML 5-min data between 2004 and 2011. http://solardat.uoregon.edu/PortlandPV.html 2 RSR
81 Burns NaN Oregon USA 43.520 119.020 1265.0 2011- SRML 5 min data from 1994 to 2011. http://solardat.uoregon.edu/Burns.html 1 Thermopile
82 Silver lake NaN Oregon USA 43.120 -121.060 1355.0 2002- SRML Only 5 minute data? http://solardat.uoregon.edu/SilverLake.html 2 RSP
83 Ashland NaN Oregon USA 42.190 -122.700 595.0 2018- SRML 5-minute data from 2000 to 2018. http://solardat.uoregon.edu/Ashland.html 2 RSP
84 Seattle NaN Washington USA 47.654 -122.309 70.0 2015- SRML NaN http://solardat.uoregon.edu/Seattle_UW.html 1 Thermopile
Make this Notebook Trusted to load map: File -> Trust Notebook

Data retrieval#

Data from the SRML stations is stored in monthly files for each station and can be freely downloaded from their website. The data can also be downloaded programmatically using the pvlib-python library, specifically the read_srml_month_from_solardat function.

Help support the SRML

If you find the data useful, please consider donating to support the SRML.

An example of how to use pvlib to download data from the Hermiston station for June 2020 is shown here:

import pvlib

df = pvlib.iotools.read_srml_month_from_solardat(
    station='HE',
    year=2020,
    month=6)

df.head(12)  # print the first 12 rows of data
Hide code cell output
ghi_0 ghi_0_flag dni_0 dni_0_flag dhi_3 dhi_3_flag ghi_2 ghi_2_flag dni_2 dni_2_flag ... relative_humidity_1 relative_humidity_1_flag 9151 9151_flag wind_dir_1 wind_dir_1_flag wind_speed_1 wind_speed_1_flag dhi_0 dhi_0_flag
2020-06-01 00:00:00-08:00 0 12 0 12 0 12 0 12 0 12 ... 55.3 12 0.0 11 172.5 11 1.3 12 0 71
2020-06-01 00:01:00-08:00 0 12 0 12 0 12 0 12 0 12 ... 55.5 12 0.0 11 180.7 11 1.3 12 0 71
2020-06-01 00:02:00-08:00 0 12 0 12 0 12 0 12 0 12 ... 55.6 12 0.0 11 128.9 11 0.4 12 0 71
2020-06-01 00:03:00-08:00 0 12 0 12 0 12 0 12 0 12 ... 55.4 12 0.0 11 141.6 11 1.2 12 0 71
2020-06-01 00:04:00-08:00 0 12 0 12 0 12 0 12 0 12 ... 55.6 12 0.0 11 186.3 11 0.8 12 0 71
2020-06-01 00:05:00-08:00 0 12 0 12 0 12 0 12 0 12 ... 55.4 12 0.0 11 188.7 11 1.8 12 0 71
2020-06-01 00:06:00-08:00 0 12 0 12 0 12 0 12 0 12 ... 55.1 12 0.0 11 170.8 11 0.9 12 0 71
2020-06-01 00:07:00-08:00 0 12 0 12 0 12 0 12 0 12 ... 55.5 12 0.0 11 122.4 11 0.0 12 0 71
2020-06-01 00:08:00-08:00 0 12 0 12 0 12 0 12 0 12 ... 55.7 12 0.0 11 236.5 11 0.1 12 0 71
2020-06-01 00:09:00-08:00 0 12 0 12 0 12 0 12 0 12 ... 55.2 12 0.0 11 201.3 11 0.7 12 0 71
2020-06-01 00:10:00-08:00 0 12 0 12 0 12 0 12 0 12 ... 55.8 12 0.0 11 186.7 11 0.2 12 0 71
2020-06-01 00:11:00-08:00 0 12 0 12 0 12 0 12 0 12 ... 55.9 12 0.0 11 192.1 11 0.0 12 0 71

12 rows × 30 columns

The data retrieved from the Hermiston station includes measurements of the three irradiance components, as well as additional weather parameters such as temperature and humidity. A few of the parameters in the datasets for the month of data are visualized below.

Hide code cell source
axes = df[['ghi_0','dni_0','dhi_3','temp_air_1','wind_speed_1']].plot(
    subplots=True, legend=False, rot=0, figsize=(8,8), sharex=True)

# Set y-labels and y-limits
axes[0].set_ylabel('GHI [W/m$^2$]'), axes[0].set_ylim(-10,1400)
axes[1].set_ylabel('DNI [W/m$^2$]'), axes[1].set_ylim(-10,1400)
axes[2].set_ylabel('DHI [W/m$^2$]'), axes[2].set_ylim(-10,1400)
axes[3].set_ylabel('Temperature [°]'), axes[3].set_ylim(0,40)
_ = axes[4].set_ylabel('Wind\nspeed [m/s]'), axes[4].set_ylim(0,15)
../_images/cd18035de29c6d6260ab372faa2c8bdfc457f434d5c173f748262a85077f1539.png