{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Solar Radiation Monitoring Laboratory (SRML)\n", "\n", "The [Solar Radiation Monitoring Laboratory (SRML)](http://solardat.uoregon.edu/index.html) at the University of Oregon has been providing [solar radiation data](http://solardat.uoregon.edu/SolarData.html) for the Northwestern United States since 1975. The SRML monitoring station network consists of both high-quality stations that measure all three irradiance components at a 1-minute resolution, as well as stations with low quality instruments that only log measurements hourly. A full list of the 42 stations (including discontinued stations) can be found on the [SRML website](http://solardat.uoregon.edu/MonitoringStations.html).\n", "\n", "The high-quality SRML stations can be retrieved from the SolarStations' [station listing](../station_listing) and are shown below." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [ "hide-cell" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Station full nameAbbreviationStateCountryLatitudeLongitudeElevationTime periodNetworkCommentURLTier 2Instrument
80PortlandNaNOregonUSA45.510-122.69070.02011-SRML5-min data between 2004 and 2011.http://solardat.uoregon.edu/PortlandPV.html2RSR
81BurnsNaNOregonUSA43.520119.0201265.02011-SRML5 min data from 1994 to 2011.http://solardat.uoregon.edu/Burns.html1Thermopile
82Silver lakeNaNOregonUSA43.120-121.0601355.02002-SRMLOnly 5 minute data?http://solardat.uoregon.edu/SilverLake.html2RSP
83AshlandNaNOregonUSA42.190-122.700595.02018-SRML5-minute data from 2000 to 2018.http://solardat.uoregon.edu/Ashland.html2RSP
84SeattleNaNWashingtonUSA47.654-122.30970.02015-SRMLNaNhttp://solardat.uoregon.edu/Seattle_UW.html1Thermopile
\n", "
" ], "text/plain": [ " Station full name Abbreviation State Country Latitude Longitude \\\n", "80 Portland NaN Oregon USA 45.510 -122.690 \n", "81 Burns NaN Oregon USA 43.520 119.020 \n", "82 Silver lake NaN Oregon USA 43.120 -121.060 \n", "83 Ashland NaN Oregon USA 42.190 -122.700 \n", "84 Seattle NaN Washington USA 47.654 -122.309 \n", "\n", " Elevation Time period Network Comment \\\n", "80 70.0 2011- SRML 5-min data between 2004 and 2011. \n", "81 1265.0 2011- SRML 5 min data from 1994 to 2011. \n", "82 1355.0 2002- SRML Only 5 minute data? \n", "83 595.0 2018- SRML 5-minute data from 2000 to 2018. \n", "84 70.0 2015- SRML NaN \n", "\n", " URL Tier 2 Instrument \n", "80 http://solardat.uoregon.edu/PortlandPV.html 2 RSR \n", "81 http://solardat.uoregon.edu/Burns.html 1 Thermopile \n", "82 http://solardat.uoregon.edu/SilverLake.html 2 RSP \n", "83 http://solardat.uoregon.edu/Ashland.html 2 RSP \n", "84 http://solardat.uoregon.edu/Seattle_UW.html 1 Thermopile " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "stations = pd.read_csv('solarstations.csv', sep=';', encoding='latin1')\n", "stations = stations[stations['Network'].str.contains('SRML')]\n", "stations" ] }, { "cell_type": "markdown", "metadata": { "tags": [ "hide-output" ] }, "source": [ "```{margin} Station metadata\n", "Click the plus symbol above to see a table of the stations and their metadata.\n", "```" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "
Make this Notebook Trusted to load map: File -> Trust Notebook
" ], "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import folium\n", "from folium import plugins\n", "\n", "EsriImagery = \"https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}\"\n", "EsriAttribution = \"Tiles © Esri — Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Community\"\n", "\n", "# Create Folium map\n", "m = folium.Map(\n", " location=[45, -115],\n", " zoom_start=5, min_zoom=3, max_bounds=True,\n", " control_scale=True, # Adds distance scale in lower left corner\n", " tiles='openstreetmap',\n", ")\n", "\n", "# Add each station to the map\n", "# Consider using apply instead of for loop to add stations in case of many stations\n", "for index, row in stations.iterrows():\n", " folium.Marker(\n", " location=[row['Latitude'], row['Longitude']],\n", " popup=row['Station full name'] + ' - ' + str(row['State']) + ' ' + row['Country'],\n", " tooltip=row['Abbreviation'],\n", " icon=folium.Icon(color='blue', icon='bolt', prefix='fa')\n", " ).add_to(m)\n", "\n", "folium.raster_layers.TileLayer(EsriImagery, name='World imagery', attr=EsriAttribution).add_to(m)\n", "folium.LayerControl(position='topleft').add_to(m)\n", "\n", "# Additional options and plugins\n", "# Note it's not possible to change the position of the scale\n", "plugins.MiniMap(toggle_display=True, zoom_level_fixed=1, minimized=True, position='bottomright').add_to(m) # Add minimap to the map\n", "plugins.Fullscreen(position='topright').add_to(m) # Add full screen button to map\n", "folium.LatLngPopup().add_to(m) # Show latitude/longitude when clicking on the map\n", "# plugins.LocateControl(position='topright').add_to(m) # Add button for your position\n", "# plugins.MeasureControl(position='topleft').add_to(m) # Add distance length measurement tool\n", "\n", "# Show the map\n", "m" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data retrieval\n", "\n", "Data from the SRML stations is stored in monthly files for each station and can be freely [downloaded](http://solardat.uoregon.edu/SelectArchivalUpdatedFormat.html) from their website. The data can also be downloaded programmatically using the [pvlib-python](https://pvlib-python.readthedocs.io) library, specifically the [`read_srml_month_from_solardat`](https://pvlib-python.readthedocs.io/en/stable/generated/pvlib.iotools.read_srml_month_from_solardat.html) function.\n", "\n", "```{admonition} Help support the SRML\n", "If you find the data useful, please consider donating to [support the SRML](http://solardat.uoregon.edu/Donate.html).\n", "```\n", "\n", "An example of how to use pvlib to download data from the [Hermiston station](http://solardat.uoregon.edu/Hermiston.html) for June 2020 is shown here:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ghi_0ghi_0_flagdni_0dni_0_flagdhi_3dhi_3_flagghi_2ghi_2_flagdni_2dni_2_flag...relative_humidity_1relative_humidity_1_flag91519151_flagwind_dir_1wind_dir_1_flagwind_speed_1wind_speed_1_flagdhi_0dhi_0_flag
2020-06-01 00:00:00-08:00012012012012012...55.3120.011172.5111.312071
2020-06-01 00:01:00-08:00012012012012012...55.5120.011180.7111.312071
2020-06-01 00:02:00-08:00012012012012012...55.6120.011128.9110.412071
2020-06-01 00:03:00-08:00012012012012012...55.4120.011141.6111.212071
2020-06-01 00:04:00-08:00012012012012012...55.6120.011186.3110.812071
2020-06-01 00:05:00-08:00012012012012012...55.4120.011188.7111.812071
2020-06-01 00:06:00-08:00012012012012012...55.1120.011170.8110.912071
2020-06-01 00:07:00-08:00012012012012012...55.5120.011122.4110.012071
2020-06-01 00:08:00-08:00012012012012012...55.7120.011236.5110.112071
2020-06-01 00:09:00-08:00012012012012012...55.2120.011201.3110.712071
2020-06-01 00:10:00-08:00012012012012012...55.8120.011186.7110.212071
2020-06-01 00:11:00-08:00012012012012012...55.9120.011192.1110.012071
\n", "

12 rows × 30 columns

\n", "
" ], "text/plain": [ " ghi_0 ghi_0_flag dni_0 dni_0_flag dhi_3 \\\n", "2020-06-01 00:00:00-08:00 0 12 0 12 0 \n", "2020-06-01 00:01:00-08:00 0 12 0 12 0 \n", "2020-06-01 00:02:00-08:00 0 12 0 12 0 \n", "2020-06-01 00:03:00-08:00 0 12 0 12 0 \n", "2020-06-01 00:04:00-08:00 0 12 0 12 0 \n", "2020-06-01 00:05:00-08:00 0 12 0 12 0 \n", "2020-06-01 00:06:00-08:00 0 12 0 12 0 \n", "2020-06-01 00:07:00-08:00 0 12 0 12 0 \n", "2020-06-01 00:08:00-08:00 0 12 0 12 0 \n", "2020-06-01 00:09:00-08:00 0 12 0 12 0 \n", "2020-06-01 00:10:00-08:00 0 12 0 12 0 \n", "2020-06-01 00:11:00-08:00 0 12 0 12 0 \n", "\n", " dhi_3_flag ghi_2 ghi_2_flag dni_2 dni_2_flag \\\n", "2020-06-01 00:00:00-08:00 12 0 12 0 12 \n", "2020-06-01 00:01:00-08:00 12 0 12 0 12 \n", "2020-06-01 00:02:00-08:00 12 0 12 0 12 \n", "2020-06-01 00:03:00-08:00 12 0 12 0 12 \n", "2020-06-01 00:04:00-08:00 12 0 12 0 12 \n", "2020-06-01 00:05:00-08:00 12 0 12 0 12 \n", "2020-06-01 00:06:00-08:00 12 0 12 0 12 \n", "2020-06-01 00:07:00-08:00 12 0 12 0 12 \n", "2020-06-01 00:08:00-08:00 12 0 12 0 12 \n", "2020-06-01 00:09:00-08:00 12 0 12 0 12 \n", "2020-06-01 00:10:00-08:00 12 0 12 0 12 \n", "2020-06-01 00:11:00-08:00 12 0 12 0 12 \n", "\n", " ... relative_humidity_1 relative_humidity_1_flag \\\n", "2020-06-01 00:00:00-08:00 ... 55.3 12 \n", "2020-06-01 00:01:00-08:00 ... 55.5 12 \n", "2020-06-01 00:02:00-08:00 ... 55.6 12 \n", "2020-06-01 00:03:00-08:00 ... 55.4 12 \n", "2020-06-01 00:04:00-08:00 ... 55.6 12 \n", "2020-06-01 00:05:00-08:00 ... 55.4 12 \n", "2020-06-01 00:06:00-08:00 ... 55.1 12 \n", "2020-06-01 00:07:00-08:00 ... 55.5 12 \n", "2020-06-01 00:08:00-08:00 ... 55.7 12 \n", "2020-06-01 00:09:00-08:00 ... 55.2 12 \n", "2020-06-01 00:10:00-08:00 ... 55.8 12 \n", "2020-06-01 00:11:00-08:00 ... 55.9 12 \n", "\n", " 9151 9151_flag wind_dir_1 wind_dir_1_flag \\\n", "2020-06-01 00:00:00-08:00 0.0 11 172.5 11 \n", "2020-06-01 00:01:00-08:00 0.0 11 180.7 11 \n", "2020-06-01 00:02:00-08:00 0.0 11 128.9 11 \n", "2020-06-01 00:03:00-08:00 0.0 11 141.6 11 \n", "2020-06-01 00:04:00-08:00 0.0 11 186.3 11 \n", "2020-06-01 00:05:00-08:00 0.0 11 188.7 11 \n", "2020-06-01 00:06:00-08:00 0.0 11 170.8 11 \n", "2020-06-01 00:07:00-08:00 0.0 11 122.4 11 \n", "2020-06-01 00:08:00-08:00 0.0 11 236.5 11 \n", "2020-06-01 00:09:00-08:00 0.0 11 201.3 11 \n", "2020-06-01 00:10:00-08:00 0.0 11 186.7 11 \n", "2020-06-01 00:11:00-08:00 0.0 11 192.1 11 \n", "\n", " wind_speed_1 wind_speed_1_flag dhi_0 dhi_0_flag \n", "2020-06-01 00:00:00-08:00 1.3 12 0 71 \n", "2020-06-01 00:01:00-08:00 1.3 12 0 71 \n", "2020-06-01 00:02:00-08:00 0.4 12 0 71 \n", "2020-06-01 00:03:00-08:00 1.2 12 0 71 \n", "2020-06-01 00:04:00-08:00 0.8 12 0 71 \n", "2020-06-01 00:05:00-08:00 1.8 12 0 71 \n", "2020-06-01 00:06:00-08:00 0.9 12 0 71 \n", "2020-06-01 00:07:00-08:00 0.0 12 0 71 \n", "2020-06-01 00:08:00-08:00 0.1 12 0 71 \n", "2020-06-01 00:09:00-08:00 0.7 12 0 71 \n", "2020-06-01 00:10:00-08:00 0.2 12 0 71 \n", "2020-06-01 00:11:00-08:00 0.0 12 0 71 \n", "\n", "[12 rows x 30 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pvlib\n", "\n", "df = pvlib.iotools.read_srml_month_from_solardat(\n", " station='HE',\n", " year=2020,\n", " month=6)\n", "\n", "df.head(12) # print the first 12 rows of data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{margin} Available parameters\n", "Click the plus symbol above to see the first 12 data entries.\n", "```" ] }, { "cell_type": "markdown", "metadata": { "tags": [ "hide-input" ] }, "source": [ "The data retrieved from the Hermiston station includes measurements of the three irradiance components, as well as additional weather parameters such as temperature and humidity. A few of the parameters in the datasets for the month of data are visualized below." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAHJCAYAAADzd4EbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAD26klEQVR4nOydd5QUxdqHfzW7szmTg7AkSSKIgCJmRTFizoo5e/UzYrhXTNd8zTliBAURDARFEANpiUvOOeyyOYeZ+v7orpmenqru6km7K/WcM2dnuruma6e7q956I6GUQqFQKBQKxcGFq6k7oFAoFAqFIvYoAUChUCgUioMQJQAoFAqFQnEQogQAhUKhUCgOQpQAoFAoFArFQUh8U3cglrRu3Zrm5uY2dTcUCoVCoYgZS5YsOUApbWPeflAJALm5ucjLy2vqbigUCoVCETMIIdt525UJQKFQKBSKgxAlACgUCoVCESYeL0V1fWNTd8MRB5UJQKFQKBSKaNDjkZ8BACf1boOPrx0KQkgT98gepQFQKBQKhSJCzFlfiHqPt6m7IYUSABT/eB6Zko+py3c3dTcUCoWiWSFlAiCE5Egc5qWUlobXHYUisjR6vPhq4Q58tXAHRg/q1NTdUSgUimaDrA/AHv1lZdSIA9Al7B4pFBHk6Z/WNnUXYsqKnaUorWnACYcGhfw2W/aX1+KduZvx2Fl9ER+nlJIKhVPW7SuHx0vRv2Omo3ayAsBaSukRVgcQQpY5OrNCEQN+W1fQ1F2IGVOX78bdE5YDALY9d1bTdkaSukYPjnt+Duo9XpzQuw1O6t22qbukULQ4Rr36BwDnz72suD08QscoFDFlR3F1U3chZrDJHwC8Xtp0HXHAsz+v8zlMeTwto89NRX1jy3Asa+n8umY/Pvpza1jfMXXZHsdtZqzai4/DPK9TpAQASmltJI75pzJ1+W78vflAU3cjJlTXN+LXNfubuhtStLSY3Egyfv62mJ/zzd824vYvlzhq8+nf23zvG1uI0NIUbNxfgUMfm44fVzqfWBTOuPGzPDz145qwvuPBySsdHf/35gO49YuleDLM8+4vdzYN2woAhJCRhJAPCCGD9M83h9a1fy53T1iOKz5YGNNzllTVI3fsT5gTYxX3nV8tw42f5WH5ztKYnlfhjO+Wxj7q4aVZG/Bz/r6Yn/dgYPWecgDA9yGsLBXNn3kbIrOA/GrhDkfHy2gAbgfwAICrCCEnAxjkvFv/XDxNtGpZs1cbEF79dUNMz8ts6td8FFuBp6iyDvM3FzlqQyx9VpsvH/+5FTd9Fl7NivzdZY7b1NR7UOBwBRFJWkDeFB8jnvsNz01fF7Pzsd/m17X7UVnXMjRblFLM21AISlumZmfxtuKYncvjjYx5x+kzJCMAFFJKSyml9wM4DcDQEPr1j+Xh75ypeiJFbYMHALBil/OBPhKU18Z2ELr8gwW4/IMFjtq0pAnFyJM/rsEva/bjwUkrYnreqz5aiGH/nR3TcxppSZdrd2kN3v19c8zOZ8wqF8uJKRwmLdmFaz5ehPu+XYGGFpIYx8is1bHTZjVEyP/F6aJHRgD4ib2hlI4F8JnDPv2j+SZvV8htV+wsxU8r94bUdvx8bnGnfywb9lcCAKocrH5a6MLDRzj3llNmrNqHJdtLADSd78Sc9QdPxIZTaus9vvel1fVN2BN5dpbUANDMUcOfbTrBMlQ++CN2DnmFlXUR+R5XpDUAlNKpps9vODtFIISQjwkhBYSQVYZtOYSQXwghG/W/2YZ9DxNCNhFC1hNCTjdsP5IQkq/ve520hMTLJka/9Rfu+GppSGoyJxNhpFi9p2m0DUYecLAqfm9e7FZoLZ1bv/A77/2+vjAm5yyuCpzIvl60MybnDZddJbGPLDE6lcU6GmB6/l7kjv0JRQ4nKeOYdqCyZQgtoVJW0xBW+1AXgmZcDiUAR1k3CCFDCCFTCCFLCSEr9QnYqQ78UwCjTNvGAphNKe0FYLb+GYSQfgAuA9Bfb/M2ISROb/MOgJsB9NJf5u+Upq7Rg/xdZU1mz7/m40X4YoGzFT1brcWSs17/M+bnBIBlO/z/669r5FeJ5hwAb/620fE1rmv02B8k4KuFO8J2lmwK+2m4Z9xTWiN13P3fxtbEESnW76to0vOHO9k45bYvlwIAVuwqddTOG4F7d9uBqrC/Ixb86+umS4OzVvcHA4CFW52Zh5ym3foSwCcALgRwDoCz9b/SUErnATD3cjSA8fr78QDOM2yfQCmto5RuBbAJwDBCSAcAGZTS+VQbIT8ztHFM78dm4Jw3/8SZr/3hqF0kB+cFDi9cS+bd3zdje5H8g33+23/73jspsmGWhV+atQE/5ctL2m/+thG9H5uBq0NweCwor8UjU/Jx3lt/YUUYQkBTmDHcYWbjO+a536SOW7DFmVMnj9d+3RjS7+v1UuSO/Qlv/rbRcdumDlf878/OnQ//+/Na5I79ybFAa9R2fLHAmYd5uD/TJe/Ox4kvzXW8OAKAuesLsFtSEDWSO/Yn+4M4bHMwntmxyqED7xmGeWveBmfaO6dPeiGldBqldCuldDt7OfwOHu0opXsBQP/L0oF1AmDUC+7St3XS35u3B0EIuZkQkkcIySsstP5x1u+vcDSpby6slD7Wjj8cXriWSlFlHZ6bvg5XxSCKgHclnahPX5qlRVj8sfGAY2HvPsPqdtwPqx21NdIUU806w4oimlTXh65dAYDnpq/DK79uwOi3/nJ8fbrrpVvZNXZCYwtMWPT+vC0AgOkOwzR3l/gnUadZNcPRACzaWoxFurPjnxudhcjtKa3BtZ8sxghJQTQSRFJQP/uN2GlanQoAjxNCPiSEXE4IuYC9otIzDZ5Bg1psD95I6fuU0iGU0iFt2vDzo4/o2cr3fnuRvH0vHLuWecBy4lXfUsNqAP+qYGexc+mcIas92LA/cqpaJ/cFoAkNjGU7SqXbFVQEhuFFQo3qlHUR/N2iye8GoTmc+8mpWcgT4jXZWVyN8trYqu+BQKdBp2r8DQWhL3LCuXUnLfGv+848vIOjtkYNlNnP5J9GY5jRFU4FgOug5QEYBU31z8wA4bJfV+tD/8tEzV0ADjEc1xlaUaJd+nvz9pD4a5NfFelEyq0MIxRu3LTQV4Urmyj0r7kgEzKzv7wWtQ3BD4dMONL+8togVeCJL82V7l84mH0cwhEAQhUUN+2PnGYrmrRNT/S9X7svdK2FE3MUEJhmeV+ZfN6E416YgzNedWZmjARGP5TNhc7+139/v8r+IAHhpKM22rLDsa/vLZMXDMOZTGkYurqy6tCFwnB9wZwKAAP11fQYSul1+uv6sHqgMQ3AGP39GABTDdsvI4QkEkK6QXP2W6SbCSoIIUfr3v/XGNqEhRNbzs+rAu3JTgaScOL3Y5mApDkiY8csEYRKyQgAVzjMN2DmZwd+BmbMtQvCWUWFWglR1okvGhRWyHuabz1QhVP7tgUhzhzzzBPTn5vkVcx7y2pwz8Tlvs/3fbtceCyPUOzSPNbskRd4dulq/CO6ZIV9bbc6cMoLR3flVOMmwmjCsGNNGKavcJ7TcITXcPOxOBUAFuie+SFDCPkawHwAvQkhuwghNwB4DsBIQshGACP1z6CUrgbwDYA1AGYAuINSykb/2wB8CM0xcDOA6aH0p8Zgh8xKcTtacZnTrTp5OMLxDj+lb2DFtPwm0giEIuE7lZRZwiMjj0yxX5WE80CKVkm8vvC4XfeaDgVzcplw/g/ZgibmlU9FXWOT5QKQranR4PFid2kN+nbIQLv0JEdFn4pMauH/TJXXxt3yeWCtA6P2MJbMdJCkZldJDdxxBId1zHScK97MSQ40YU1hvjJrvZwIPBMWRzYMVXa8CCed+84wi505FQCOBbBcj8kPKQyQUno5pbQDpdRNKe1MKf2IUlpEKT2FUtpL/1tsOP4ZSmkPSmlvSul0w/Y8Sulh+r47aYj6zoFPzPK975CZjD2loT8gsbrdC0yrpHPebJrwvFBtoU7g3eAyXt+iwefTv7aF3JeaMJ3WQiEW5Yy/5gx8BeWRSUzilBJJm+3ukhp4vBRdclLQOTvZUWy+WS18Wr920m0PbZcufawdRz71S8jV39ISZSu5a578HbOS0T4zCRW1jTG7j0P1kQonzLHEpE7f48BEkxgfevQLb7iRjV74apGz6AojuxxoOHhI/ceEkOG6qn0UNDX8aQgxDLC5YQwra5eR6EgFaUZWBgm3VKsTtVY0CXc1IUOog4joUmwJI644klEfsoSS098pvPz/ZiEzVrwwc73UcXv0SbxTVjI6ZiVjr4OBngn5FwzWAoecpBBLTwqceOOdpl4zUFRVH3L1t2d+ljfv7CqpQefsZLTLSAIQ7GgqItxx6qcQKxeGk+nQXC/EyVj5SRiLAx6yNRsqwlDj7wwzKZWsyDMGwBIAzwM4CUBdhMMAmwVt0sITAIokJ6twVU3NpRLfq786j6F2SqiDQTSUExvD8IgOlVjkm5+0JDjlsOwkEWlkQwPZc9o2IwntMhKxr6xWWgBnGoBHz+yLY3u2diTsmM18bQyOiLKEO7E6ZXdpDTpnpficJvdLand+DMOXxeulIecBYM67x/TwR2fJXtu3524K+OzECTDS1MUgY2NMTACU0lsppYMBjAOQDeBTQsh8Qsh/CSHHG7LztWjapCfiQGWd1APKc+Z5YJKcNeSbvPAEgEg5EoULb+KINGaVnizheOWKkHFMaokhmrzVc1OZAGRh/WubkYh2GUmoa/RKq473ltUiId6FnNQEtE1PdPS/zjWlSc5OSZDvtM7nISS2MdOvQ4bUcbUNHhRW1KFTCBqAcBwG3/htk/1BAqp0/5Nkt39akQ3nM0dlhKsiD4dwhgLZiIR9YWphHRk9KKXrKKWvUEpHATgZwJ8ALgYQ29qwUaJNeiIavRSlEgPJ+jA8N8NZwTfVBLMwAlnbQkHkzW9HpBZZqQn+QahPe3v7b0sp1WpFQpyryUwAshRU1CLJ7UJ6YjxSEjS1vKz/zoGKOrRJSwQhBG10s1+oz1Uo92c4WkaGrMf6AT1/f7uMRLTLcKYBWBpGiNkrnDLlf2yUS3bGEi0ZM1KO+WSRVFuzg2dBRV3MaycwwlmELJLIDOvx0rDTQsv6ANxDCBlKCPEZwCilNZTSnymld1FKh4TVi2YCU+fJPKDh2G3Cobymac576fvhhcaFSklVfcBKQJZIeSBfc0yu773MQBKhst5NSpv0RK5fQHNi9roC1DZ4QQhBbqsUAPLOYyXV9chJ1VbubdOTUO/xojRETVNxVX3UhfIdYYTEsf8rOyUBmcluJMS7pK/trDX7Qz4vj6s/kpvEWRKgBVv9i45Vu+UEni452r3w2mWDcFyv1gCAoqrQBS7ZlTjvHnjv9y227URJqGQcrMtqGsI2dcpqADoDeA1AASFkrq76P4sQkhPe6ZsXbdLkBYBopAOtkMgSFs7N3NR4vRTDnnFWFrSkugHZKW7H54rUmGz8HrN9kcf24pZRvMSKthmJzV4DsMUQqpmtT+ay/iIl1Q3I0u8pZhcP9f+ta/SGndLYjuNfnBNyW6ahyE5NACFEM3k082vLymCHIpTltk7F4Z0zMXpQJ1wzPBdAeBoXGW0wEHoEmGg8l6k3Eap21IisD8D9lNJjALQH8Ai0Yj7XA1hFCAnNjbUZYJ5wfRqASnsJ2UlRGlm+laj/3pJTW4ZSRKW0uh5ZIdhZI7UqM6rxtkmsxJqqoqSIUH4HbZJo3hoAI8wOXywtANT72vgFAPv/V3RtnT6T5bUNMTPlsb5lGwSecKN3ZJJpRYILB3e2P8hEZW0DMpIChTtZkwcP2bDUUBEJJx6JBWYk+uY08DEZQAaATP21By3Y/v/At4FOe60dmABekgxXcoKMRGe2ccUCq0lNZiDbUVSN3LE/YeJi5/GuJdX1yE4NQQPguIX9F8VJhHw1RfITK6pCWJ22TU9q9qvEztnJOP8ILYyPreZlV4wlVQYTAHOMk5gkzLUlrhneVfs+hyuxz+ZHJnBKJiOm0QQAAO0yksIWAGSjncJl9R7nIbDV9R4k63477BrLXB+R43eoTsiyiH7L/RICaST6JusD8D4h5C8AEwEMB/A3gIv1tMDXhd2LJmKGKZtWemI84l1E6oeNxkQs4zkbbYmUh5XtW2bB+8tazZb4bwcZ1xiaCcC5BiBSoVZHd/eHIsms7mevjX7iHieE4iTUOi0RpdUNYRcasSLcSajUoMZPcsch2R0n9Ww0erwor22MiAngyK7ZAOQ0AObrEAk5saTK/tqyyS8zWft/22WEL9zFIjkVEPjsyVLT4EGKLgBk6tdYJte+KLNiJNTsVogKlsnkl2B9C8VHiiGrAegCIBHAPgC7oRXjKQ35rM0UQgiyUxOaZJKVpSk0AFb1ERolvN7CUXca1bVOiNQ6/KQ+be0PMjB5afRDI50QStY3Njk6ER6cVrl7VCKds4j6Ri8q6xoD7ovsFLeU4M5suqxtamI8EuJdUv4D5tSurXWfIRkBwJhxFIjM/ck8/K0oqapHRlI84nWP+jbpiaioDS/Vc6xMAMyhj2EXYdPo8WJ7UbWvWFpaQjxcRO4+3ioY46I9F4jqdfwkUba5xGTeCQVZH4BRAIYCeEnfdB+AxYSQWYSQJ0I+ezNEG0iarwBQXFXvk3BjhVVFsHDyWNvBwlxCucGbShUfjr0xOjj/HXwqdQcCgJOSx4Cc4CiitCZ44MtOTZB6bksNTnGMzGS31CRh1u4wn6FQ/HIi4QMgc96S6gafKhyAPxeAxH3KJuCnRvfH1DtG+LbPtnnmw9G+Ga+DeRFsl9WP5bNgyZpcLiJ9bd0u/lQoq2YPPR8kn3kb7EMmS6obkBDnwkuXDAz5PNI+AFRjFYCfoRXe+QtADwB3h3z2ZsRFR2oOJ9kpCWHZVpyWFnVKscF+aSSckpJ29LaIf5eppLbaQeUyI+V6mAvPCdBOPd0cTPEnO9QeyNQ4cIrdWGw2a9x0XDefuthJFkansdYui/y7dkVUmF07K0ADICcAlPhs4n7hobCiTio755tzAk10WcluxLlISAuGSNyecv9voBNt6zTtvUw0UX2jFxcd2RlXD88NWI0v32GdH6AhDOHOeO3Nv5GdDw5PC5WZ7JYSZA/JSeZuDyctcbQpqapHVorbJ9SFgqwPwL8IIRMIITsBzINWA2A9gAsA/CNCAZnNJTslPBNAtL30RQLAwCdncY6ODMN7iG1xv0nYvKcs2217DA82wPH+X16iESPNQQBg45VsvvjRb/0V8T7Y/Q5XfxTow9shM9k3YTgxAThVC1v9InYTm1/16b8vslLcUk6AxZy2oeJyEWSnJISoAQj79FL/r2ZCM2hK9P9bxn+gttFvT082aB3tStCyVL48imzMFr/q/kK5rVKCfiM7AYCVSM4JQbtz6xdaBc/bT+wRsF322hInBSUiRKjmUSOyGoBcAJMADKOUdqeUXk0pfZtSuoJS+g9IfeK/gJnJbsf2TN73RAsmAHTMDF3qc8qTP0Qn0tNOVcgmgiyOCWDxNutVSDRSAYdKo5fi3Caq2GhnClm3L9AJiRAYNABRFAAsHhO7QbfEpwEInNhCNQGc2rcdOoTwPMURgpxUd5OF5kqZAKoaAv5XnwAg9Vv5E80kOXA0s8qXcdor8yzbTtFLrBuzADLsSiC/N09LvHPVUV182zJTElDmYBXf15RiOdpRAOEgipD61kGqeVkfgHsppZMopaFXh2jm1Omqp8wUOYlRhNPp//cHTnR0fP7uMpRUN+DBUX0cnil0rLyGDzE56jjBLtsVW6VkpyQEpeG1S5XZ3HLZM8ekWGO30uSVlWUCgJPnwGnhkwaLOGc7wYM3iWenJqCspsE2UqO4KtgE0CEzSbp2uxEnNmYzoQqoJxzaxvdeRj1tXiWyCcNOAMjbpj1fodQt+NwizNHOiXnUYe0BAI+f0z/oF3p9tnXxsU16sa4jumT7tjm9PuYMr83aBKBHSJnnHNmaNIC8CWBpJI6R+I5thJB8QshyQkievi2HEPILIWSj/jfbcPzDhJBNhJD1hJDTwzl3qj4QZiTFo7bBKxVjGwrGVW/vduno2irV8Xes2FmKET1bR7JbIRPKwMmwG6x9WcxSEhyrusLxcg4Vc4pV8+QbqnNUOA5jdhqAHZxqYhl6yVsnA6dTH4DfLZyc7Er78uz42SluUGrf59LqeiTEuwJCp7JTE1AqITyYiXMRZCYnhJSxTvaSmu+p/5zTDz/ceSziXQTFNueta/Sgut4ToBJPkwx1DqeITjiZEZlX/LaiqqD73u43O0X3uTGaLLMcCgDm4jqyyaWagpKqemSnJqBba+dzCEPWBNCXELLS4pUPIFIz0kmU0kGG+gJjAcymlPYCMFv/DEJIPwCXAegPYBSAt8OpStgpW3MCCWX1Y8TOAmDMINhFz2H+wTVypRQCHWSah4r7QBhJQewGXJ+zV6obowd1dPTd34Xod2CHlWBo1pS0SgsUWmpDFCpj6c9AAMTHaUV2oikAWHH/tyss93MncUnVdkl1PXJSEgJMdbLCg5l4F0FGcnxU64IYJ6Bnzj8MPdqkYUDnTBzWKdN2dVrKMZXIhjpPCCFpF8MdF74ZNCPZHRQGaDdetM9MQk5qQoC5gmkAZIVv828aao0IGcLJs0GpVrQuO8XNNTvLLhpkBYA+AM6xeJ0N4BjJ73LKaADj9ffjAZxn2D6BUlpHKd0KYBOAYaGehGX1ytAFgHKLwcBqsLOLVeWpSkf2a+d7b3WjBqQfDmFS2FlcjbGTV0Y0wQsruBEKdqmBi6vrEe8iSE+Mx6VDD3H03ValTNfv4yffkIHZKHkYnZTevnIwHj+nf8B+EmKwUDjzv9NwSDaYZCS7HUWWxCo2HPA7thkHPn82QOuJrbiqIcinhK2Qndry3bqgFEoFSNnLYszjYDTX5KTaOx+KHB5lQp2ZBuAMXSXvhHMHdnLcxkxSvAun9W+PybcN922zS79eWtOArOTAa5uZ7IaXApWSGkHzQqO0uj5iScXMhCM4ltc2wuOlQs2obNp1WR+A7RKvSGRAoQBmEUKWEEJu1re1Y74H+l8WW9UJgNHbYZe+LQBCyM2EkDxCSF5hoVjtyEqKymgArAaZt+dsFu4DAgUL3nRgdeEadOHh4TP6hDQp3PftCkxYvBN5YZT5NLM7jJrhdoIIqwNACHHsXGlVrOn0V8WOSNNW7LH8XivVqTG07cwBHZCaGI8BnTItv08GmSJRIpxqD9i/4MR2uvVAFZ6dvs5hz0KHlx3Sl/bVxru9lOM5zaIerJ5r44oqXZ+IXQRYsKUYZTUNjk1hshq8GsP3ugK0FvamB6MJzUiWRKgzS1HbKYsfHmdF6/TwIyzYNTmyq3yQWWVtI9KTAn1anGQDBIDO2SkYe4bfv8pL5ZJchTIOhuNrxouEMSJ7PzqtBRBtRlBKBwM4A8AdhJDjLY7lzQhBTxWl9H09ZfGQNm3acJoEIiMAzLWwX9olOJmxyu/JypvTdlhUkyvUQ2gykt3cgd1O7cPC0cLN5X3XyT1x03HdAAB/bLTPAyDi++U2k21VaEmAAL95xSkPTrJWP1v5FvzAER6M1zjUAJEP/rAvKyoi1IRIGcnx0lknT3ppbkjnCBVNMAy8L2QLAhlLATNyUuw1AGz1+a9TemHaXcfi+QsHgBCCPWXawG9lMzc/l8zkIINxlegymS3sNAC+OgAmT/EciVBnJnhkc0Jw7ZApgyuCaRSHdXMeXf7XpgNB119mPN9b5r927TKScN2I3ID94UQCvDNXvCC0EyysJnFziHRCfOBULuuU26wEAErpHv1vAYAp0FT6+wkhHQBA/8sCz3cBMOqFO0MrThQWMjeM+cft3sbvhGGXetWuwIVVgpSL3pkPQJvIeSsIu4vOVNR3fBW6v+bYM/rgvtN649Gz+oX8HYyP/9xquT+cOFezKlAWqxhmwNrEs2xnsGYlEmGhcYIsZTI41V6y3i7YUozlUUhMBAArd4X3vTwNgKwJwFgKOLit+Jln90VGUjy6tU7FpUO1ULPnLzwcgLVZkGe7lhXMKg0CgDEyLjs1ATUNHstJQmgCSLVPm8wKLV0/optUPyNFdb0HI3oG5h2559ReUm0bvRQ7iwMFMZnx3E5rFE5m2C2FlcJ95TXWJgArAdwcIt3d5AjY4jQAhJBUQkg6ew/gNACrAEwDMEY/bAyAqfr7aQAuI4QkEkK6AegFYFG4/cj0+QCIL85GUwGH/54/wPd+hU24l9Fz996RvYP2WyXZYJOPKCGG3UWXTUgj4u0rB+Pm47o7arPtgFijYWvT4wzWskhU0+TC8ruLqLS4PryJOhJZIdqkhaNSjZ4H4cpdpRjw+EzH7ewGPjt4JaJlvNu9Xso1Afh8ACwGeqZCNj9jTNC0Ws2Z7/OOWcnSgpnR/JORbIx6sHd6LDVNEsa2pdX1lhrDBo8X3VqnBiQAigUl1fXISg68PrycALLI1LWYrScfYiTEuXD24R3wkB5qHU5iOKvrbLy2PFPLHxaaZia0sHvXvNCwW8gwZMMAKwgh5ZxXBSEktDyvwbQD8CchZAW0ifwnSukMAM8BGEkI2QhgpP4ZlNLVAL4BsAbADAB3UEpDcrNONKhPMiQkxu9MjmC8WGoRHQxpG40pdlnaWCvnQ0aci6BVavBEZTeohLOSBIDDO2fC5VCIsCpYYiewFHPUtbKEGjpnV2ClysIEwMvfbVxFW3XJauXao22aZZ8YrLKdkVD9l9h3Wf2O7/2+BRUhOMCFUweAUorS6mDTECEEWfrEJqKithFeGqzWTkmIQ0Kcy3Iy/WqR5hX/lsnHR8Zp2BwW5/FSn2OZ3eP023r/PXVMD7/DbQ6L57dYvZZUNyA1IQ6J8YGTeHZKAhq91PLaldWELnybMS9YrBxGy8IQ+nnIJLUya/UIIXjzisE4c4DmACljAhjcJYu73crXw3hf3HfaoUH7f1wpTrvj1wBo97I5kZVsGLusE2A6pTSD80qnlGbYf4PUObZQSgfqr/6U0mf07UWU0lMopb30v8WGNs9QSntQSntTSqeHem4WAgho0mZqQpylAGAX8lRokTiH2abXPTUqYPvDuuOJjGOIi5Agmw8ArNptrX0IJTa+yvBwhKLOjreQ3q0EAG2gD17pRZuBna2d9irropMfYtCTvwj3yYbY8SZ7x3KQfo0vGKzVxrAyK4Uaiuo03t5IRV0jGgXez3ZZ+Yp9TnHBwkN2qttypccmLfOEnZHENADiZ+tVU9pqj5f6TAB2PwUTKleOOy1ge5aEBkDLFR/8O/lMHhbCQ2l1sEe9kSoHgt/se08I+m4e/tA258+8KOqHaROcmHQZTFCUSQYkuoxtOEI54z493PX9q4/kanWt6qyUVNcjzkV8OTteuWRQwP6IagD+6Zh/+gwbD2g71fXQZ34V7iuvaUBivCsotaaM5oGxZi9f6TLDJlXm35uLbL/bjDEpi2i1YjWR/6XfxGcf3gGj+rdHgkEgsMoGV1XvQYOHBgzWQ3OzA46JRniO3TcO6ORM3j2pt9/xVHbCfPOKI3ClIZ2prA2St1p3HAao/333d22l+6tJPRp4rFggtKpmZnXd7WCTFm+VaOfdLvKKZ9us2n6tawAaTPcc8zp/fKq4YuYXCwJj6jcWVOLIp/1jRL5Elsh0k5bRF/VgJQAINGgyJo/SGmvhu7/A9GNeZCS5XciVTFTDQtvM19a47hA98yInzCS3CwlxLl8FSf4xfDNHum5WkgkPFQ1FR3cX11Fh9GnvfA1dXBWYAyDT9JtFVANACHmDEPK66OWw780ep+kjnXjKltU0BNjyjOdk++04SveQ/WvsyWiX4ZcwZcwHzvHf2aIB38r++cdGbSIoqKjDu1cfaSs8MXhhLj3bBqYDtlqdhup8Zzdf1klK1gyj+lV2Lj778I4BqZ7/b6J1ZALDSymO7BooJIWbRGhzgdiHw8oc9JlFOlizD40TrCdxt+VqjZdC2N/W2jOeqWvN2himiasKI/vdNokKoub7mU2SVn3mOTxqbWX8Bxp8Y5ITppoie9Y8oWk6Oxu0rCJH2jJf4qLA6/PpX9t870XJtESCLiEEGcluy7GR3cbJJkFAMyvZO0wCYsFEZhQKxTLL044muf1fJDtOyZ46D8AS/XWu4T17tWjMnvd2GgAzTmJly2v5D1aSOw4J8S6pmFM26HTKSkZ7g0+BXZWuaCFj/zQ/XHaUcAbrx88JjDyoEWgeymoapOpp8zBqPLrq5pq3rhiMly7Wam47zTCY6A5NyZaZ7MbiR0911MZLg/1RnPpCMA3NrSdoVdE8FvZ6q4RvVpoD2SQlPPz3RfAzZLeK59UB8LVNtU+OwyMSOiiryJ/BXbK4mfX8ToDWGg++qYTlTOD/v40eLypqG0Oyxa8xlf5mQuLXNx3t2yYqmV4iMNEYM2yK0gwbQ/nMHKisw9eLxAVy2DjCnnEj2TZ+JQAwZ10B8gXmV5mFiIsQXx4aWYqr6n3hq4zO2f7QZ1nfHFkfgPHsBaDE+Fnf1qIxX6NMG4mRx6ZnzpA6rqymwWe3MZORJHfezYX+B+g5PQyJfbcssqFYxvlDdC+XWXh1s8EtV59MjapMc6pPI7x870nuOBzd3R8fLBIAHv5OvhiGGaMTIHMOPevwDrjoSM0m7jRbXJJRA+CwL+akJlZQSgOu/3l6RjOnc+35g7Xwr/OO0Nr36yhWTzqpEGdExgdg0hJ+XrFSwSoR0HP6W3i3l5ocpwLaSiTH4cEErh5t5NTcPKwcAZfuKOWaTFgWQqv7sURQOpw9U6L/l91HodjiRQW+jEXDflnDFw5F1T/7GSr0icKsmfbg7SsHy3fW1B+eu5JMlcnrPl0s3CejAYhzEZzat639gQZ4EVJGZ3bZyIVQlifNIwl9BNmwPzBWM5QKX1bObkbKaxqFqrXMZLn8610ND1OqQXKssGhrDsc790252vPGXP88L3PAukwnK9DxgK7S7m+woVs5yIgGa6OUKxoMjH3+8a5jheeIBRsKQld3J3IcPUWwVdLvGwqx7bmzcNXRWmrrqz5aiMXb+JUTeb8fC7lif63MLKkOol+MNEhEAYhyRNiZABo8VKhiNjtOBbZNkEr7yhPKju3ZmmvWkyXUlLBM4OHR6PGiXLCKz0hyw0XEzm2lNWI/Czu+Wuj3d1jxeKDjInveRQJgWQ1fuLtgsD/Bq0joH6eXLO8lGTFjhCVGO95QaZGRleK2zRNghYwlksC5yZKn3TE6hssuVJQTIIATewde+FBLfMpQViO2rWVZpPdkq5rsFHdA/n1jxjuzI4iRKSbV9dX6BGHHfwzOTeab9Nd7tUSNVrXUK+sakRDv8q2UjN6uVqmA/T4Agf/Tun1+FaNMsov0pPiQ8pkDQM8QBhMz24v81fbWCpw3RTgZFNhkzvq81SDw3SBYoVglpWKmACuHPWPvTuodPHiK8Eg4AYqOKKluACHgPkP+lL78Z8jsOGUkOzVBKu0rz6kr3IJAsn4xZrJT3MKKgGwS52kAXC4tZFI0SbDfz/wbP3P+YY76Z27PIp1O7M1f7YrS2xorptpVGuRFRzFEmiEmVPDMlDmp9hqApqCgoi4onPK8QX5BKaICgDEPAIDD9c8VEc4D0GS8d/WRAZ8zk92orvcI41VTDMkxHjI4a8lQXst3AgSsC3wwJ6PbTuwhnBisVHY7SwLLvqYkyqlvNxaIM1m10/0PrOJ6y2sbfaFSQKC90yppUrFgEOqc5Rd4ZAQAFyEhqQUBvk1QhttP7OF7b3R+CqVMau926fYHwZ+f4IHTteRSRpukyDfEanJnGgCZRE6XD+uCD8cM9ZkdAGBYrjiV64c2GSCtKK2uR0aSmxs2ZZccxyqs1E4tbkV6oluqXkO31qm4fFhwUStRHhG7RYiVBsDK3KFtdwsFpbIaftsrj5JbNIhgE/kKgfmR/fZmDc3Ifu1w9ylaNkC7UGaryBSR5uHUvu3Qp306d1xlizIZXxqesCVqZvw+p2Y6dm3N/kisoB0gX8Y4lDwA8fpn9opIHoCmxJwowy41qDE+9jbDYG+H10tRbqEByLGwN7EBJj1JvMq3clYxJy+ycjySJS0xHnEuYjlQaQKP/4GWPW9pdT0yk91BppXLDeFxMuFkLpezQkJG4U7kmGMneFxteBD/d4lfiJAJWzRrU4b3aCXlC8CEC2YSknFM/Wz+NuE+tpJ6c84m4TETFmuOVc9eMABxLhKQfVFkCw6XEk4SIIYvOY5QA1AvbJstWRGQdydlSJruTuvXDj3aBGuVRAK0Xax9tsUqnudDYyTHqi0LtQzDrMGDCW2i/PjMP4pnTmWJ0uxSrfNCba89JheAeLworKhF2wy+FjM7xY16j1cY5WF0aGQmUuNwI3oOjIsB9nxbaS+MiJKVEULw+wMnom16Iool673IagBGE0LuMHxeSAjZor8ukjpTM4NJYLecEJzaNtunSuT/iOxhP7Vvu4Dt8x8+2fKclfVaJrIMwSSerWsAeNImS58qamvslwyRSFFLCLEchAAtQiA9QAMg992igf4Eg51OFPpjTHnM3t5vyrQlmoyZaWTD02KnTpEAMKJnKxzZNRsdMv2TbzvDwCLKA2C83hNvHh6wz0WIlNcNmyyYZudaU0ETHou3iatCytR0N4fEGX/TDQ5KLp9/RCcseuSUgG1WjnziVa21d3spp4YAw+qZN07QPFkyM9mN2gavMPaaOb7ecGw3nHdEcKlc0cTE/C9euZSvibKqCCiqA8DIslhsWPkAvG/SljphR3G15f6S6nphSDUTzO20aDzB1y5nwv7yOqF/U7ZNxMScdQW+9+v0e944/gjvY8NYzXxpXrzo8KDjeO2ttFRdW6Vi4CFZ0mYLWR+AB6Hl3mckAhgK4EQAt0l+R7OCVfTjVa7yVRbjXPRGXRq87cQeePeqQNVye4EUyWAe/sYVsZFWqQlCJ6ZynwYguO2Kx0/DWYd3CIgOMNOnfaAq+W2LKlVOaJeRiP3l4syHmgnAubOYTBZAke00zzCxsTnpzpN74TCDA+Le8lpzMwDaXJvkdllK46IsWx4vRZxphjB6ys/bwM/sZXzGzVUMCZFL5sMGRjZQmrVaPKzSHtvlX7dLOlRR1yid8S8tMR5JkjnnD1TWC+s12JkAigRe8YB1RUDjpHPZ0C5B+/3pgPkr9pP7tkWXnBS0zUgKCt0CxKmRmaApupbZKW5U1jVyM0Wy/0P0/2ZbmABKqurhIvzFxmn926NjZhIu1qNinGAnUhZbXB/2HImcABk87cGXC7WcFG9xtFleL0VhZV1APhUj2TZ+JcYkR2zBYrztr/80j7sw4wkUvdoGm/tW7Q62sNt5+LdKTZCu5CkrACRQSo2BlH/qKXp3AAg9/qUJYasVngo/20KVyCS39hlJQTcbIQRXH91VeBP7CzjYSZvB52Weqrzvzkx24yc9b7RIa8GkzGN6BDoxldU0oKCCPxnK0DY9EfsFkymgmS6MPg+y9i5toLcWAO77hp8gxzigGqXxk/v4NTa/CCIXJizaIZzgn71AK/ok0gAs2FKMoqrASdU4kYo0JVbqckrlkswwDUCqw3hixv+deigm3+bXPiTYCABsgGlluB/NE75s6ulDcoJXbZsEvieFFXXC6JHMZDcI4T+3Hi9FcZW4bVaq2OxXp1/vsWf0wUl9gh3Y2G8u+n/zd5f5rg8vedJ/pq7mtrt7wjIAwDqB86hVqlqWjlwkLOWkJqBYEDJ5oLIOOamJwkRP8XEu21wO3TlhkczZWhRdUFhRhzaC/jLBdomF1kpElZ6++0tDhAKjqKoeHi9F23T+4o2NtyJh2fh8jzu3P4Dg5+ClmeuD2vG+r1/HjACTIQA8Pi04w6Td6j4nVUtqJeO3ICsABKQXo5Teafgo7/7bjGBS82iD4xIjx8IeyCbiVoLJKT6OCL3bD+iTg6gtG0zNkwjgv2GsQudEfQaA/eW1OHdgR3x109E+bcCAcTMx8IlZGPbMbMvvtKJdRlJAog4jlFIUlNehtWGSMNf5XrSVH6JWVFnHLXhkRPS/3mioWGhUwV9gUL+uFDggWiVTYisiXmgce9istDAiwcFqpfzxX5rDnFXEBGBIuGRYSR/loKb63af2wpFd/cfbFX1i9+OTo/2e4ezfYDHxMp7xH1wzBDcc2z1odcibYOwmcS3Ej58NsLiqHl4qfn58aV85bb/QJ47npq/jtmU9NSaRMrKlsIq7IrtvZHABGCMsPPkPQU54n6ZSIABkp7iFmqyslATUN3q5K+oDleLfGNBU+eaoIsbhei2NL288KmhfepIb5wzsKPQtKKyoQ2vBeZk/zsS84IQ+drUybjleXMGULX5EJgBmUtgtqDVgNPuwhY5Z2/r5guCsmAcENnpWg4PRrXWwz4jd6j4nVSv2JJMYTlYAWEgIucm8kRByCyJQgrcpYA8rzwO3dVoiXATYx8kuVaQPfKLJaf2+CpTXNmIfZzA4wKRyOw0A54FmA65Iu8BWp7zJqby2AbtKanzVB5mtKpzQJUbb9EQcqKzjTlD7ymtRWdeI7gbHp9tO6IE595/o+3zJe/OD2nm9FMVV9UJByQ7R1GVU1znN6Af4U23yNB5WqsnLh2lq41lr9nPNO7x7hcFik63i8QG/ecloInpLMvrhZsEAed2IXKEDInMy4mXk66MnbrGz+S569BSM7NcOcS4SZHIYzgm3K6qq0yZxi/tCC9sKXsWz50e0IraqJsh+W1HFt5/zNe3ba79uDNrHm5xYUim7UrvnDNQWJy8LolHYb88ThAsr6ixLW+fYtg3t2atv9GJkv3YBfjBGWqUm+BZRRho9XhRX1ws1AFY5MbZaRKoAsKxFwBYvIifAtumJcMcRYa2BfWX+xU+r1ASMv34YvrzxKOEzxWDzyB0nBWug/322P+OpOUQd8D97j5zJj0Czy/RoRFYA+D8A1xFC5hBCXtZfcwFcC+Aeye9oVjz5o5Y4Ij0xeABzx7nQITOZe9EP6D+q6AFhudh5lfmY5NY63c4OyTcBZKW4hbZZZsPiqZYWbtFW2Syr22uXDeJ+hxXf3zGCu71NeiIo5Q8kzH51WCd/hT2Xi6Cb6YE0q6rKaxvQ6KVoJRgMhpjy3ZuxKtlrR/uMJFwyhG/fXK2nOb3m42CZl9n5nhzdP2jfo2f19b0/YFEp0pjlkHGiLgDYrXLKahqQ5HYF2IuNE4BVBMINx3bjbqdUExJ5qsRX9ckuUBDWjmMT5uuzgydEI0a1a5I7Dk+c6//t0jiCB1NrW61OtcQtYpW4VVtRNUGmtRp3bvC1BfwTOs+UwVaYzBNdO4/2nBt9JnhCYPuMRCS5XQECdGB/xfZpu1W8Vc6EA5XiidiOdfsqLFXPrdMSUFHXGKQN05yfxdfH5SJISYjjOgYzh9XDBIW6ePcSo6DcWgPgchF0yEzmagAopXhkSj4A4NIhh6B/x0yccGgbtEpLxPkcZ08jByrrkOR24f7TegftO2dgB997nn9IUVU9OmUl4+bj+RFo2T5NcoQEAEppAaX0GABPAdimv56klA6nlIqTfrcAUgXx8J2y+QJAkc1K/JIhWpwvTy1XVFmHZHecMLwsJ40JAHwTgJVEz9SF/zdxedC+hyZrqXH76wLA6EGd8Mm1QwOOsQtRG3RIFnc7E0h46qYNetGXnpwBbPz1w3zvzfkA/Ks1/m985oAO3O0M5ozFS1D0xuVHAAiM1Wd4vRQlFs6HVmma2UDKGziNWibeqphpfK7iJGdiKly7ZDEFghUfm3j2W/h5iKIkP/17GwC+uWSRnl3QOGCzW+gKXeMxhJMLgKVsPYVjS7/CEOLJc8qSmcQzk/mTuJ0GABBXE2TaQpFH/eAumkA66JBgwZT58xh9b9iEVd/oxVmHa/fy/C3Bav4P/thqWdbVylm50EYAEJk5KaW2bRllpt+KaU9+XVvAOxwAfEK9+bwFNj4LgOaAWdvgDRIw2G9050k9ue2snJALypkGQHzeTlnJ2F0S/Nwa/4f/6qGwjL4d+MII40BlPVqlJnJDlI2C8Z5Sjia5UmwqAfym5EhqAAAAlNLfKKVv6K/fnLSNFoSQUYSQ9YSQTYSQsU7bi1L4ds5Oxi7ORd9SWIW0xHjhYMDU1g9OCs5Hv72oGh2yxJECqQlxSIhzcTUAu0pqLKMMmJMfz7bE8nAbb6yT+rTFvAdO8g3+vImJxdxaxZQzBzZegY+/Nx9A73bp3AyFxnA+8+qH/Q8iMwubKERC2Ko9ZejfMSPA1MA4Z2BHtBf4LWwtqkJdo1eYTvS0/uKMgr7saQIHp0m3ag52/+aUjZ2l5yJP4aiEfQKAQANQVt2ARVuLMW3FHu5q7hQ9x/iOIrE6XmSSYjzz01rhPuM1YAIb+w14GoB5enVInr3cHefCtufOAqCV0DWblXwCQJr4OZi7vpBbLltKAyAIaX1K1xaKEvYwMwmv5CwT7oy/U7yLCXUU9+gJbqYs2xPU1g6rioB2JoB2+lhgfvbKa7WoAqu2DHMBnEIL7RajlcCprlDCx+mQnGTUNHiCVrYsR4ooNbVV7pS95bXISnFbRs10zuZrAIyTMy8xlRW7S2osM6gyXuQ4EP6x8QBW7CwVtmHXTuSbZaRFpwImhMQBeAvAGQD6AbicENLPuhWkvN47Z6dgX3lt0MC7dm85+rRPFzpJWVV1Wruv3FIyJIQg0e0KutkaPV5s2F8R5FxihIXlmL38AU3zwOyJRrq0SsG/z9J+rld/3RC0n63g/31236B9jGN7ammJzSun2gYP8raVYETP1rxmAIBvbtEmxT2m//fZn7UJRxT+luSOw50n9URZTUOQTb2osg5bCqtwZNdsYbGafeW13GIzzGzTv2Nm0D5ArAUB/KsBUZInZgaJ59w3bOA88dDgVTGzfR73whxuGd2z3/zD50fBGzwP0WsnfGIoqQpose1JbhduOLab8F5mKyrm2MVgA+6InoH32uPn9MezFwwIsN+bV4nMl+H1ywdxz2nEHP1QIDGJM8wq5h3F1chIikeqhd29U3YydpfUCLVhomubmhiPLjkpWLajNGgf67PRnHXh4M7ISnHjgiM6+VI3L9hcFNCO5R7oZzFeJMbHITPZHaTdKa6qR3W9x3KC6ZiVhHgXwVaT4M4ERWMGSxHmZ2+X/hxbZd5sr/fJvLLdWWx/XnYv7zQtVpgPQNccvq3fqJUzaw827a/kJmcy0ik7GQUVdUFzAatA+NGYIdx2fz50UkDxM2Mf1u4rR58Oclk+jcgkE2ufkYSEeBe2HhBncWWEFjPUfBgGYBOldAsAEEImABgNYA3v4JKqenz611ZfAhSWNpVH5+xkeCnw2uwNaJeRhAYPhcfrxdq95bhQMgb28/nbQKEl+qhv9GJncQ0uHRKcCtRIRW0jflixB91bp6LR69W8OWsaUNfo9TlX8Uhyx+HE3m2wYV8FXvllg9bWQ30OgJcIznvl0V3w5I9r8P3yPT7/Be1/pT4Jv0978XnbZWgDySu/bEBRZR0avRSNHoo1e8tQ1+jlOrEwDuuUAUKA39YVwB3vQqOH9VkbWHh51xlHd2+FN+dswosz1qFDVjI8XooGj9c3sZ8kyDcOAAM7Z2LFrjK8MXsj2hkGyS8XbEdKQhx6teMPCAnxLtxyQne89/sWfPrXVrhcBA0eikaPF8/qHuIibUmSOw5nH94BP67ci/fnbUajl8Ljoahr1Pp8zsCO3InYmJ985Cvz8Mz5h6HRQ/XfWbunGD9wCh910gfUGav34f15m/X+UhRU1KK2wYuhuWJ/ivtOOxRvz92EPzcdwBcLtmvXx3BfXDM8N+D41MR4n8PjJ9cOxXWfLsabczaiS6tU37WdvFS7PiInMe23cqG2wYsnf1iDQV2yfG0nLdmFNumJls5z/z67H576cQ3e+G0j2uvPbaPXi2nL96BXuzTLrJA92qShpsGD52eug9vl8v3GCfEuXDGsi2VkxNHdczB91T58MG8LGrxeeDwUDV7q04J0NGj+urRKwfL/BBbKqfd48eXC7Wj0aPcxEyhvOp7vn8HIbZ2KeRsO4BuDd/yyHdr41sOilkV8nAtdclLww4o9AT4503WHxl4WKagfGtUHz89Yh1u/WIJ/ndLLd1+w2hJWzy2rAPrRn1tQqDsPN3ooJizegfTEeKEtHvDnyPhs/vaAFOUf/LEFrVITfPe6GWNyoVd+3YhkdxwaPV40eCnW7C3HuZxIMCOdspJBqabRapuR6Hvm2b3MM3UB2iLy5uO74+VfNuC1XzfCHU/QqOd5qahttBxXV447DQ9+uxILthYF3BfMLH0uZ0HHcLkIurVKxZRle9C1VaplSG9LFwA6ATDGhewCEBB/Qgi5GcDNAJDQvqevatRp/dpZemoO7JwFFwHemhOYMIcQ4Jge4lUt4H9A/m2K7413EQznrNCNnNq3HX5dux+vzd6IOBdBvP7qkJlkG9Y1rFsO5q4vDGjrjnOhZ9s0oVNKYnwcurVOxdYDVUH9BYCurVIsy/YmueMwomdr/L6h0DcJAloGviO6ZFn+vykJ8RjaNQd/bjqAP02hTucN6miZjOfIrtnISU3A+PnBITYA33uW8fZVR+Lkl+bi5V+CtR73n3aoZRKcEw5tg/d+3+K7j4yc1LuNZfKiMw7TBID//hwYTpaTmoAbBY54R/dohYykeJ9Q9OiUYBPCITnJmHjzcK6K2h3nwj2n9sKrv24MOC8h2sBmpaEhhODUvu0wa81+PPZ94Hnbpif6tD88huRmo1NWMj74Izjv/6l921lWElz4yKkY+MQsTF66yzfIMkQOi4xzBnbA23M2BT23gL3vyOCuWUiId+G937fARbRJMt5FkJ4Yj9P6tbNsO3pQJ3yTtwvP/BxsLhkzvKulivndqwbj1i+WBl3bJLcLR3D8CoyceGgbvDZ7Y5DJMT0pHoNt2h7bqzU+m789qG3XVilBjrpGbj6+O56fod1Lr8/eqI1RcQRulwvDu7cSmuYAzc9icJcsLN5WEpSJ8voR3SwFtC45KWiVmoApy3YHhSHeckJ3SzX8nw+dhJNf/j3ILJUQ78Lxvawj2Qd3zUZCvIubFvuKo7oINUMAcEzPVvjfr8ArJg1relI81+mXkZHkxiVDO2PG6n1B90V6YjzGnmFdg+bkvm3xztzNQc+tGSKTLKC5Qgi5GMDplNIb9c9XAxhGKb1LcHwFgGCjihyZAMTVa1TbSLRtaf1VbWPTtqX1V7Vt3uc8GNv2ppQGq3UopS32BWA4gJmGzw8DeNji+LwwzvW+ahvdti2tv6qtui9UW3VtW0hb7tzXop0AASwG0IsQ0o0QkgDgMgTWLIgkP6i2UW/b0vqr2sambUvrr2rbvM95MLbl0qJNAABACDkTwKsA4gB8TCl9xuLYPEop32VToVAoFIp/IKK5r6U7AYJS+jOAnyUPfz+afVEoFAqFohnCnftavAZAoVAoFAqFc1q6D4BCoVAoFIoQUAKAQqFQKBQHIUoAUCgUCoXiIEQJAAqFQqFQHIQoAUChUCgUioMQJQAoFAqFQnEQogQAhUKhUCgOQlp8IiAntG7dmubm5jZ1NxQKhUKhiBlLliw5QCkNKnt4UAkAubm5yMvLa+puKBQKhUIRMwgh3LrpygSgUCgUCsVBiBIAFAqFQqE4CFECgEKhUCgUByFKAFAoFAqF4iBECQAKhUKhUByESEUBEEJyJA7zUkpLw+uOQqFQKBSKWCAbBrhHfxGLY+IAdAm7RwqFQqFQKKKOrACwllJ6hNUBhJBlEeiPQqFQKBSKGCDrAzA8QscoFAqFQqFoBkgJAJTS2kgco1AoFAqFonlgKwAQQkYSQj4ghAzSP98c9V4pFAqFQqGIKjI+ALcDuA7AY3o0wKCo9kihUCgUCkXUkTEBFFJKSyml9wM4DcDQKPdJoVAoFApFlJERAH5ibyilYwF8Fr3uKBQKhUKhiAW2AgCldKrp8xvhnJAQ8jEhpIAQssqwLYcQ8gshZKP+N9uw72FCyCZCyHpCyOmG7UcSQvL1fa8TQqxyFCgUCoVCoTDgKBUwIWQIIWQKIWQpIWSlPgGvdHjOTwGMMm0bC2A2pbQXgNn6ZxBC+gG4DEB/vc3bhJA4vc07AG4G0Et/mb9ToVAoFAqFANlEQIwvATwAIB+AN5QTUkrnEUJyTZtHAzhRfz8ewFwAD+nbJ1BK6wBsJYRsAjCMELINQAaldD4AEEI+A3AegOmh9EmhUCgUioMNpwJAIaV0WhT60Y5SuhcAKKV7CSFt9e2dACwwHLdL39agvzdvVygUCoVCIYHTaoCPE0I+JIRcTgi5gL2i0jMNnl2fWmwP/gJCbiaE5BFC8goLC8Vn2jATeH0w0FjvvJc1Jc7bKBTNiZJtwLhM/8vTGLtz11cBjXWxO19LZtNsYF++83bsuq7+PuJd+kfRWAfUVTR1L2KGUwHgOmh5AEYBOEd/nR2BfuwnhHQAAP1vgb59F4BDDMd1hlaUaJf+3rw9CErp+5TSIZTSIW3atOGf/eMzgK8uAYo3A0+3AaqL5Xo9/y3toXo+F5hwpVwbIwVrgZLtzts1JZRq/aZceSs6VOwDnmwFlO6M3TkpBabeCWz7s+VNTn+97uy+8nqB1wYGbnuqVWT7JOK944H/dgSebgt85zDHWGUhsOxLYOMvoZ07nHvY6wE8DaG3d8rHo7Sx5osLgHePdbZQGZfpf//tGKBoc+T790/h6bbAs52Bp9uF/h0taEHoVAAYqE+mYyil1+mv6yPQj2kAxujvxwCYath+GSEkkRDSDZqz3yLdXFBBCDla9/6/xtDGOTv+Dvz8Qje5djMf8b9f96Pz8759NPDa4c7blWwHfvw/YO8KoHyv8/bhsGaq1u9QB12nrPoOeLk34G0EXj3MeXtPA1C6w3m7P/8HLPsc+PQsbVBoKWyaDfzyb+2+2jxHrs2T2fzt3pDcfOTZPEe7hxkrJwLFW+Tabp0HvNQTmHo78OVFgZOcHeV7tOOfyNL+vuLgvqIU2D4fGH8O8FRr+XbhsmN+4OenBYsZMzsXBW97Y7BcW0qBVwf4tQcV++TaRYLpY7Vzznw0tPabftXuEScYtV6NtfL3opH5b2kLwk2/Omu3f7WmCQuFffkhLySdCgALdM/8kCGEfA1gPoDehJBdhJAbADwHYCQhZCOAkfpnUEpXA/gGwBoAMwDcQSn16F91G4APAWwCsBnhOAD2PUf7e40D94ZwpDxKnQ1YRjwN2uCe97G2evpfn9BvnFD4VpfTvroYKFwf/fNNui7wc+EGZ6ufGWO1QayqyNl5t8x1dryZ0p3Aj/c6V6VXFwMv99UGhFBYY5CDPz8vtO9g7M4Lr70dvP69bll01M/4c4K37ZLs7//6Bn4u2wnUVcq1nXgV8MkoYPtf2udQn2MniO5FGQ3GRyO1v2e+BJzxon971QH7th+fHig8v9zbvk0k8HqBhe9o7+e/Cfz8oHzbmhJdU3Khdo+My5TXHNaVB36WvReNMIG2bJf1cUbGZQLvHKNpwpzeT8u/0jRCoSwk4VwAOBbAcj0mP6QwQErp5ZTSDpRSN6W0M6X0I0ppEaX0FEppL/1vseH4ZyilPSilvSml0w3b8yilh+n77qQ0DH1eUhaQ3hHofgKQqF8Au9XP87khny5oRUop8MmZcivVpeODt73QI/S+hMNbw0LzmZCFZ4t7a6i26pOFSeJ1Zc7ObV495H3srP3UO4C8j4JXbnasngJU7NEGhFAw3x9lu51/xz16ig42ecQar8d6v0j1/uEp9t8tMu9NvtG+LcDX9EXbHPbZaP72v16T/45hNwFH3QwMvFz7/LdEOpedC4O3NdTInzNUaksDPy96T74tb1yeMVbyvA7HCB5xCfobybQ0DZwaeismyLWtrwK+v83/+el2wIFNcm11pAQAQshwXdU+Cpoa/jT47f8cUbyF4fUALj0gYpD+gFRZOAyGi3lltWGmtqJ4dYB925/uC97WGOWHkmksPjg5eN/EEHwfXugOfHmJ/XHb/+Zvz//W+TmdDNI84e/H/9P8AWTbM9Vr/jfy5wWA3UudHW+HJwT/hSzd7abbCZHti5FfHhfv++N/1m2n3hH6eafrq8m2JkXmBgkFYjnXzShwEI40teXifXts7hVmHhz5lH/bGc9rf+3U+aLn5Zn2wP411m3NVBfbC3VGKjhmzXD8cGTNs5+dG7ztwEb586z8RjMbAtoCQsaENotj4phyi9z5Pjw18HNjLbD8S7m2OrIagDEAlgB4HsBJAOoopdvZy9EZmxOeBmDNNO1Bcuk/RfcTtb9lUXQ4m2RymygIUd0bK9hqePeS4H0bZzn/vuoiYONM++N25QHEqZLKTAgJIhsFla1XfSfX/s+X/ULZUoeZs5d/4ex4O+wEH6v+bf09sn0x8ter4n0l26zb7lmu/R35JDDsFuCc14BeepJQ0STNYMKjcVJk2GmzPhcEPK342rpdOFiZotbYuD2xFXzusf5tSZlApyOBchvNkJXt/Z3h1m0B4PcXNRv6gU2aT5Wsn0XJdr72a/FHcu1Dpb6ar4F9W+J/ZXx3k//9qknAgrfs22z9g7+dpxkwU6ALYsPvtD9WgNToSim9lVI6GMA4ANkAPiWEzCeE/JcQcrwhO1/LYsZY4JurgcJ1fg1Amu7wtegDcbtIq/yWGQZ9mQvPI5phW3+8HL3vtmLXYqBdf/6+qDo/Cq5vnuQgtNdkFduxgH9cLKA2q5Bpd8WmH06wE4I8+kQ94m7gzBeAI68FjtA1Uasmy52j16nB2+ycvgrXyn13JPnmauv99dXifcW6t3/rXoHb2/bVxjwrZCYvEUWbgTlPazb07brWrMJGMGP8/gJ/+8yH7dvyhIz+58ud9xWBa5s3jEgPmef+gMCPasmn1u2Mc5DLaTofQ1MnB1NK11FKX6GUjgJwMoA/AVwMgGMsagEs/tD/nv2IrXVHFysnv/lhPBw84SG9g/+96IawI5phW9FcCVqxZY5YBfr1ZXLfEUqJiD9fEe+TEf7MdtKPT+cfF2l4at1whdVYhrrJUrI1eFsP3f4vmkAA8W9x2Vfa3/2r+PubM6UWCtgDGzXfpsT0wO2temkmzkjYvHkYowysBBQeRuGvr0klb3cv8rS2q6dof9fYOHhHI3TPzvRg5Zg84yHrtuy6n/oE4DKsv7fMceQ0KesDcA8hZCghxCdqUEprKKU/U0rvopQOkT5jc4VJxIlp2t+dFtIbz24jC2+QMUrjLTFGNxraB2bza9uXv79GIleDp9G/qtuxAPjuFrkJcd6L4n3LbFanXg+wKUIhkrImBwZ3EAtTAHBoU5QiHKFElKSFPbfm1a6Ran3AHfV84PZepwFxiYEhiZHqlxVPtrYWNgFgxD3W+61s1Ac28n+PTD2FSjhhfbLOv6smhX6O+MTAz6GYG5kJ8I+XQu9HqFpZO+x8OKxgZtnOQwPNpHuWaU6Tkn2W1QB0BvAagAJCyFxd9X8WISTHSZ9bFNGSjuc8G7yt2iAJWoWP2DnCOPQAjRg8px0RsitKZgfuwXE8BOQiJowOcFNvB1ZOABocrkgyDwn8PM3G3hbJLGLmEEg7eOr+cDUAm38Lrz0Pni+JLEUW93j3k6zbsnsqO1f7e+ZLWuhvnFvbZmUCsHNim26zYuN+ZwPw6zjrY+x8YKx8OIq3ADndg7en6UluRAKAzOQu63hs55NhxDzmutyBnydcIf9djEv0qJjeZ4mPsYumsFPHh0o4c8ysf2t/c7oDPAt8VUHwNg6yPgD3U0qPAdAewCMAigFcD2AVIcShS2gLoPeZQDsJj/xQsHO+sVrZjud4qRr5SsKzPhqInOZ4yKraWBSG1YouFOxUkuYJ3KkzqEjA2LnY2feEAtfeH6YA4DTBSMl2e/+McPJWMMHv5MeC96W107IDimDCQ46e6GvYTVroL6BFPlg9m3aCq0hTFS4em8k4qwt/e02pNpbwBID09trfyv38tjKTh2ySHSeLg0rTeV0hupbda/DVYAsId5L4+F/+Y/192wSOeuEy+Qbr/TWl4n3MNyqjA19INP+WApy6WCcDyACQqb/2oKXa/61IbSN+OMLFLkGEVUISZpYYJggTEQ0G0SYaiYjYDZzWXrNj8rBTc3k5pok131u3+d5BjgEeogHvI47TWaRZ+G7wtnA1AHuXOzv+tcO15FRW2DkmWsHuiyM4znHJWdarKnZtMjh1w9LbW6vERc5g1+ie+MskTCW78pznZbASPLJzg5PXMNj/ksn5X+00ADJj34xH7I8xs+0v6zwCZhNMqM5tGYbxIiENiE8KL6w7lCyvkcBKUxaXAHTSLe8uzjQumQVU1gfgfULIXwAmAhgO4G8AF+tpgR3qKVsAaW2B6gPOYldlqbbJwCXz8Ikm+i2SqV8jTTQyArIHNq0tcPNc/jF2whRPsq+3yfhmpWKWIdLpc51M4Fz/hBjWbJAlHAGgqhAAAVI4aXiTsrSET6LntmK/NiEwfwEj6R20Z0/UVjQRd9BrKMhECHx4ivOMbVYagNS24pUe0yQmc6y0ielAfLJ4rJFZPZaFkF770zOBnx8Q7zdHJvAEANHzJTI1EKJpKGUSHzU35jwj3le+R1v9A3xH6TlPS51CVgPQBUAigH0AdkMrxlMq2bb5kpjB357SShukouUHYIXMwxdG2IdjZJwSnWTmk6WqUFNtJecA6YLCHHbOdixe3Miv44B1P4fbOzHUQmgMZTUe7greqr2VgJuU5fxcsslawvmfqgqBlBwgjvMMJOlZPEXPbeV+/+rXTHp77ZkXrRRFaXCd5qngaaWsWPKJeF9aW3F/WcbDZE6dB0K0Z0qoAdDHoEsc5rAAgNlPWu9niXJ4JJgEM944Vy/wsVk5MfDz9bOAG2db96W5Y6UBqCrUBEAAWPR+8P4j5dblsj4AowAMBcBcKe8DsJgQMosQ8oTUmZojIvUZEwxE+6OJSCo3DprVFuEjkWafRKbnwyVD8gD5wb+yQFvl8dRbjE5HWp9HpL6ecLlcH3jwVlRGrAb4kEwlUVzBW63EL5dMR2pENn2xjJZLJJxUFvgHPjPJWdpfoQBQIBYA2HeKBHDhSlwyzDSUEr52pLa21wCkCO7XtPb2PgA8LYsdMjlDROmYzcIMzwdAZPYzO0B3OQro3PKD07h4vdr1ZeMbzwlQ0tdKWnylGqsA/Ayt8M5fAHoAuFv2O1oMSboAEGkNgMzkV7mff5xRdT3PItY50sz5r/0xHQdF/rxVhf6kTEIsBt8DG0I8sek7zasQu/BDy5K2oWgAwjUphChAhKJlkjWfFEtolX4VpAquKgTSBJXwfBqAUv7+2lL+ihjQIgEAvhbDyg4vm2fi3WPtj3FKalttMcBTi1dbmAAAaw1AXYUWFsl+z1hhXtjwBABRbQ2ZxVo0k6U5JZzQwkr9ujENAe93Ej0DJmR9AP5FCJlACNkJYB60GgDrAVwA4J8XCujTAHDUTeEkRpG5SRuq+ecwSsdWK99IIzOR8kqOhkttuYQa2mJyC3XiNA/owx3knd+VZ+1J3txMAFb7QkmgFElE5aarizUTHQ92v4gE99pyv3BvZsMM7e98jq3YaiEQ7UJAXUeI9yWmA6BAA0ezVFOihdElpPLbprUXaw/qq4GEFKB9COW3ZRBpyaoKgY6GCny831Y01siseO0iKmKJnS+YFeb/lScAiLQsJmQ1ALkAJgEYRintTim9mlL6NqV0BaVhL1GaH+4U7S9PSgtHK2AV1mGEF2NrLN95TDNL3+q04I0M9ZXiwYthOfiGOoFJtBOd1y5JUEir8XAnGIv2PNuhjygKAOEMGUUb/dndzLAVq+g5qysPzorHGHCx9rc1x9ZvFeZq9AEIp2CNCCs/DebMyIscqq/S9osEubS2msMkb4xrqAbcNs9eOLwkCO2tKtQisBi8/100iUuF6oWTgEqyXLQs4UQlmO9vrgmgNHgbB1kfgHsppZMopdFMwN58cCdrf3kx3eEIAJJqGe5DadQetNDSC46or7IXAKJhHzePl7zJXjQIhbPCqC7mCxDR1ABYZbSMpgIgWiWkrXwAKNU0eiIBoKOevjYhJXifVe6IRD3MDHDu4CeDlSYmQf9feJEtDTXWkzj7HXh+KfWV/t9BFHIcDWpKAk00xnA+BsvhECuO1jWAsmO3mdcG8VP+WqUBtsPcF54GQDJKQ9YEYJuzUOYYie/YRgjJJ4QsJ4Tk6dtyCCG/EEI26n+zDcc/TAjZRAhZTwiJXMJ1nwDAWYmHUw87HA2A8bxWCTKilbYy1sgIAFFRv5oGXF99bwOigX6/TVVHq/6+0E1Q5jaKGgArwq7CaEGohWbYivB4Qa5zKx+AhmotQkMU+eNO1gRrntmPp2I3wpISOQkblr134y0S2LDngysAVPnHMR5Wi5z6av93nxlDf6OGGu28578HtD40OBUw4E9jHAqhjBdtdI1QqMXHSrYCk68P3h5O7QGzgCt6ViU0UrJPeV9CyEqLVz6AEFxGuZxEKR1kqC8wFsBsSmkvALP1zyCE9ANwGYD+AEYBeDusqoTGlLM+EwDn4bD6UT+xSDcJyKeJ5arlDAKA1eDcnOxc4dBkGgCTAHDs/3FOKzivbeayZuYDYIU5JKs5wJ5HXhw/oPWZxPE1ACxWWqQBIES733gCvqggla+t/jxGwxoq+s5OQ6xNAA01NgJAiv+4oLZRNgGIaKjR+jXwMuBOQebMb64J/ftDqSXAfEZ4Bahk4ZV0dpqS3Ih5HhFNexJRR7KuvjapvQAAUciaAwAYDeBE/f14AHMBPKRvn0AprQOwlRCyCcAwAAI3URt6n+l/z9JG8h4OqxzYrPSlCNmUuXYaAEv9bBMlfvF6rUP2fEj0j9LwfQBCdmIzteNONoLz2oV6hTQZx1gD0O147W9OjzDPGwWYKt7NUdMD2jVPyuRr2tigaeXZ7k7mD5oL3rHuFxuAnQgAsvcCrxLnYwXaOffpmfO4GoBq6+fHapFTXyURgRNhKNUFDwuhJVx2LgQOu8BZmzZ6imc74V4mE6QRWU0yc8g0YnYmF5mlJc4h6wOwXeJlk5ZNCgpgFiFkCSGExVO1Y74H+l92Z3YCYEzUvkvfFgAh5GZCSB4hJK+w0MLxwriqZg8HdyIOQ8Vud0FOfER8jgANgMXkFm2vZBGeCDpANdZp6trmoAHgnlZw3mhoX94eHl57pz9Rn7O1v00dBcCDqeKt7gtROmAmAIg0AID23PMmRLtcGD4NQITvR1HYWnyilggpwcqObzOZWpkAGqrFQla08NRrApSxz6H8nhePF+9bwtlnl7mT3S922lurCqI87MxKDF7YsdknRZQcSULLEEVDX0iMoJQOBnAGgDsIIcdbHMsboYLuGErp+3rK4iFt2gjih4FACS8uQXuouRqAMAQAu7Zs9SV6KBlWJoBYB2Vk6DY56d9FYmJh/6udGjoWPgD8E4f21aH016ree1RohhM/w04DAGihgDwfALZKthIeElL5Dn92gjsTlqyyQAYhcS/YOXL5TAA8v4Ua69/JTgNg/J3G7gDutyg7HAkaeNc2hOflkGHifbwFnZ1q35cTJsJJ4aQ1ABxBQdZ80NIEAErpHv1vAYAp0FT6+wkhHQBA/8uCV3cBMNZq7QytOFFoGO0ohOirgQgLAHYXnZkeeOeQNQHEWgNw3L3aX+kQKIn+yQzWst/llHA0AM2SUJ0Am6Eg4BMMLe4LkQmAPT/xNqti3qBpp9nZrfs/R7IUNGDviMkmS9EkYSkA6L8DT+AxCwBJmXyTQCSfA3Z9wtUAOG2zY4H/Pe/3dqcCIJG/trICAG9clc0oalf5FM1IACCEpBJC0tl7AKcBWAVgGoAx+mFjAOjltzANwGWEkERCSDcAvQCEnpHGvHKOTxKsxMOIArATHuItog9k6287WoVEAKY5CaVw0qbZwE/3BW+vl1D1AtYP+/a/nfcHQFQ1AE3hn+F0QGyOEz+D3ReW6mnKL2fLnh+rsrAiE4BIE8VqzLfXS4c7iZyQuS52Ps1ssuQuGCRNALwJRtYEEIpTnQgZ7Y4UDu93XqihEZdLMwPYJnFzeN5wnABjrQEghFQQQso5rwpCSKR0I+0A/EkIWQFtIv+JUjoDwHMARhJCNgIYqX8GpXQ1gG8ArAEwA8AdlIYx+/3wr8DPoWoA1v0M5E/i72uosX6oLR9oow+AxfljbQLI+1j7uz6EAjtfXAAs/jB4OxsMrFZrgPUNblf1T0Q0NQBNojloSdoKG3waAItJYstcoJSjOmd+NVaTYnwif0IUZcQ7VU9XzDITRvrZs7sX4xIAEMEkbmMCYOGF5oWFp1HTeNhq3xDeJCb6roDrI3nvGp8rp88YS3l9+USgvaBSY2K6fSIgp+cNZyFpXtkzR8Wgc0RIAKCUplNKMzivdEqpILDWGZTSLZTSgfqrP6X0GX17EaX0FEppL/1vsaHNM5TSHpTS3pTS6ZHohw93cmgCwITLgck38Pc11ko65oQRBRBrAaBYt6HJVA0UYS7ry+LseRXfjHztoAiRLDKrOJn6CABw2EWmDS1AAxBtwimXzAa+UEIUGyVMAK54gQbN8LwZM9Wxe8VOC8b10pa4LitsCjIRok3kXGdlWSdA03jWIKNliQDm+5JrApC8VwLSlTu831k9hJRWwNVTgOs400hcQnimXx6ywpNUXgrB/xypKICDEpEAEG4UgFVij3hJHwDLKIAYCwCsiEpYWfBMWbHYINwkGQ8lNACLPwjtq0WTcTQn6Z0LQqxCGCWWhVBilhHO5OTTAFg8f644e1NW56H+90ECQIQzAf72lP0x8QnBGgBKtb7wEun42gk0APW8lbgA830rm+gMCB4vfBoAg+ahXX+57zJeM6fP0nc3an8ba7TKiV05FS3jkySinByeV8I+DwCY84x9W16fgcgJAISQ/1i8/i3zHS0OkUOQrCTIC+GR1QBsnRe8z6wBSBCEM8VaAHDpAoDXokjSiz2BH+4R7zc/tOyBtk2sEwaidLSRtIEHrSabQAD45T82FQpjjLGmhVNYkSxedkY7ZDQAJI4/iYu0QuxeYRkgRZXqePdapK55XEJw8TA2Blhps5hwYO6bT/vmdt4XJ4KmeWzlaQC6nwjcLVGO3PhchTr+WZpLEiKfvjocJ0Dz/3jUbSGfQ1YDUMV5UQA3QEvK88/DygRglFLjBFI2r/ynnQaAPXQ855qAMEAiLmsaawFAZsKsKgSWfCI2E5TtDPzMJs5QStLKIqxJH0kBoJnUydorM4jqGK/nYD3rWiTTS4cjYMlMbCI8EhMb9fBL5PYRZPhk/WCZ3tb9yD9uwhWBn9cKjrNCVAHU5Q4Wvn2/k8Vv7YoHQIJXtr62IQjfTu5389jKxjfz+JjdVeK8RmGKI1gdx3E0NiMaTwFtjI9knhNA3gSwOy94m9m/SXSdJRzHZX0AXmYvAO8DSAZwPYAJALrLfEezZ8AlgZ9FToANNYFqRNFNX7g2eFtjnbUKEtAGlSOu5p/XfxCEq8lwUmU65dQn4JswZVY0LFzKzKrvAj9XsMnZcGNblUUNBdF1i6gGwHQO4W8UZTt9qILIUl1dv+KrCPZF8n8tXMdpq/8fUhknzW2ZWcmi7dof+N7eBZxnWfsyvT+6oCoqFb7LFJx0YAMcXfN+o4EUQab1OHewtlFGUCKE7/QYjpDl5D4zq7GZ1o8noJ3yH9N5LH67dI5XfzuJssZ22hI7DYDTR9ioSR71vLO2MiXaASnBXfoq60V5ngawEloK4cGU0of0mP2WjznO1Z3Ml6Aa60xSqoMr31hj79me2oav+m40+QCIHra9K+T7Ew7jyoBj7zFMmDJOTV8LdpjaTrtT+2tMrex4QLKZyIWDVSQFAPNv0gQmAKvzyrLQqmxwFDE7QHklJnER3kZtVRtKlMdCYypgQ3v2nDIBQDYUNi7B2TXP6gLhNYxzB9vTZSfxuMTQ22oH89vKYF4BWwlo5m1mocW4OuctsKw0iey7jc6dZqScAB0+Y8Z7RaRhCgdJrYWsD8CLABYDqAAwgFI6jlIaRjmjZoj5JhGaAGzU+FY01NprACCY3AOkOQKc9EhofYg4TAMgcejm2fyBz/z/+galMCZju4G+JWkANv8W2X44hafNigVBv58D9TTPr0TWp0TWmY9NHuyvbDvH9nXi97XpZSp6amkCsBneuQ6ETMsSbROAQAMgc979qwI/263OrQSAo27TokpEBaYATQMQ6TTfRv+gcCociohPimg1wPsAdATwGIA9hhwAkcwD0LSYH8p4kRNgXaB3rRNJ3lMn9hlgEBf/QTI+5K44oOdI+fPGBMnfYQbHZWTN1OBtQOANzDOLWHbHpj+xCI8bYAoDFA2Qdn35/Pzw+hFOzDEQbB5rKmTU+CK8jfI+JdJJrXRhcaAejtrzFLlmcW44WjHuXe4XTI+4Kvi7QjEBADYagCgnhBJqAHjaT72PzFHPXNLZavUOWF93KiEYxnEEpXAx3mOEhPeM8QTK+EQph3VZHwAXpTSZUpoOoCeAnnoOgIjlAWhyXKYfUaQB8HpMN5SDB9k8CPFqkxMX/yuNN4wr3tl5owlx4AMAiCd7HkahZ+Cl8u2kEPQ3kgPfYReaTilaIUX5WvJy4wsx/P9sMM46hH8opUBlFC2A5nvKyeqU19ZOc5DeQT9WUgBgE2z5bu3vgrfl2pnHGjuMkRPm+zMcEwBPAxCOmSUcJ0Cr887V824wocF8feyeWav7RUYwlAkDdLqgMP8P3U9w1h7wR8Nk5wbvi0+KuA/A44SQQgBrAawjhBQSQv5j167FYE46E5+kPVjmxCXeRu2GGnG39tnJhWdqyJMe1T6ntQs+RqgBMEj5ienNKMELC4WyKYUbCn3PCb1t8Rbr/dH2AeBd2+YSFSALGzhF/f75fuClXlH0OxEIAKHYp2VMAMPvCDwPD+Nkw/rBVuCisqxmCtY6e377nA0ce6/mqW52hg3HBMCzE4fjBOgkD4LZCdCRcCcwrWV14R8ftgAQhTDAoIRYIYw7N3NKRTPcggRRJmR9AP4PwLEAhlFKW1FKcwAcBWCEvq/lY74JmJo/6AHRNQAnhyD7MO1Bm97aZ57kKnLw8zRoaqJLPgPaClI/NgXMp2FfFAQAO4dJK0QhWYxo+wDcz/HUFZoAmpFgwJvgRCpxFr0h9JIPkyA7voPJyVxFkQnuVtj9vwDQ32COMScCkmXBW4Gf7ZLCEAJ0PhJ4aJuWrMZInDs4+oB9truveBObEz+LbX8FfpYxnZz7pvY3yATgxL9D4BtyyuP8460meBkBQMqhLkwNgOy4Y3wm2vUTHxdhDcA1AC6nlPpqJ1JKtwC4St/X8ul3XuBnX6IMs4rM7E0chgnAOJDdqcd7igQAb6O2Aug32vl5Q0W0SjFOzOe9wz8mEtgW4BBQsc8izl9HuAKLou1TZJMr3cnf3tQQGw0Ai023iqGOJE5WpwWmMEJqNt1xsPt/H9gc6NfBxoBQVsvG59fWLGZxT/IEgEV61AavzkZAW87Exr5L5n/K+yjws4wGoPcZ2l+hEyDnvIeeEfh5lyk23u6+sBQAPGKh4+xXtL+iGhFGmBlIliBhSVYAkFwsiBLZmZC9c92U0qAUXpTSQgAhpIxqZrjcwQknmH3FbF/zev1JNJzCBIBkXYrP0s+Z0wNo3Ut7T1zgTu5m4SEWJgDeOfqeC4w1rK6Y3VTEgU325xElOQkl4xsAfC/IjGVEVAc8ms5PooQ8kfYwDgejl7mdCYANuNQrfz8WSdwPjL3LAz9TDwAS2jVigrsVdjn9zSt91o8eJ2l/D3fgp2KXvCbgPBbDNM8EwHIo2JnBeBPb7CcCv8MJMhoAtrBy4gTYdXjgZ3OmVDvHRSufCyvNEEv4Fg0nwFA1ALIOqu7kyDkBArAaoZrR6BUiPFWKL1c2RwPgcoU4COl2yG7HAZd+AYzWVYGDDJnCircA+d9y2ppu1GhmyWPwBv74xMAoCLvfwW4QAoBcTtZEILR0pIBcnm1zdjYfURQARM5lVmmUY01mJ/97dm1Fg45RANgnmW3QHMJlhTltMPU6ULebJtWCdUDFHusmdjn9zZMT+/+zcrW/nYZI9s3UPzuB1Sq6gKcB2PirXBd4E9tW3a68arLcdxiR0QC44rXfzewEWKIvKnjX1zzWBYXN6b+lUANgMc0FOXUbYPd/fKL27IZS8tzqvAHnkpyKZR1U4wVO7CZkBYCBonLAAAZIfkczhjPoi0wATJXIbo7TOMUaRBgn8b7nAGltgH8fkEtV6W0MnBDTOU5mkUZK3WQzYS581/4reHUTAKBVT4nzcwjHpl4TgfQWR9/B3y5yEpPpb7ihfL+/IN6X1p6/3acSlxAAqosD94kcA9s5GC54sfyyA2W5abLnpVQ1Y1fXImhyIoHbnVQjN/9v7x0vPrazhWDBEwCkJwmL+HYnmhreeU97mn+My62F85mFdFZgi6cBYBM00zYmZ5nOG44JwMoHwCAAAJHVAgQ987IaAMFY2da0iHUnRU4AoJTGWZQDbvkmAJ6qxGcCEPgAAFo2vGPuFH+vWcrj2SHj3BJJa6izOGYR314LjMuUr0TFm5jMdcLt+l5TbL0fEA+4oSZckhUAeKlbzaWJhecIwQSz8D3+drta46HQ89TAz7yqYgxRvnU7lTi79p6G4IlENKF1OVrcDzMFawI/U6+8AGBn/+bhq2wpuB/N52ZjBPudzDnaLTHdP2aBaZ+kpiQugWOmdJCRUDSpOQ1VBPyT02VfAR0HB+9v01eLtrKyT/PMfq16aH9ZxrzsboH7S7ZpfwvX87/T6p6R0QDECRzCw8F8jXpJ5nURXlvTOBwfWRNAs4UQMooQsp4QsokQMjakL+HZuyxNAJITsXkgkbFD8vA5yIQha1EKrJ6ivTfnJgeAzXOArX+Y2pgm0pMfA0aaS5TaCAB2iY8AC5VriOp42RXQyonB20QPeVwCcM7rhuNCsHyJHt7PzvW/7yaYOJ1qNXYtdnY8jy667TVRUHmSRVo01vHrlofLX6+aNlCEvVKywpfSV9IEwAQG1u43waqXh50AaY5iEMETABxpAET3exgCQHKOOHcEIK6zAvDV9T1PBW6e6696Zx5Xf9X9FkTaO6sxSCY6hEU6yS6cZDAvesxaDRGy0UsRdgJslhBC4gC8BeAMAP0AXE4IsYiNMGCsXc2TVuNFToAOUooG1byWSQXMgT1Y4ZTHNQ5OvAfl8/OA8WcHbjPfbMc/ACSZkhfZTdIheUgL6CKoe21GVlDirbx5E9kje4GxOwJjsHkDWI5eF+soQfldGVv/5RO039mMjADQ+lD/ezvnTBnO0M0GmRaDOQDMfRaYfEPwdt4kF1Y1QOrAWSoEAWD3Eu0vrxw34L+X2+p16s21ABwRISdeXsKyNn3k2sZZxLeHkp6WhWm64oGMTsH7z/6f9tedAjQ4KB0MAB2P8KviqwoD9xVt1P6KsoXGWzgTywgAzERWyakUGQperzY3tO0P5B7nsK3ovuYJAPYagBh4kkWVYQA26SGJIIRMADAawBru0TUlwLIvtBXLHy/7t/NUzUxq3DhLUzFRr/aq2KfdjEZa9fLfhEaWfaFNmJ4G7cI11mh5p2VY/rXWxtvgn7BlB5rlX2vtvI2afX3fSmDZ5/79316rxe1ndPL/X7y2VUUSJzPceCsm6H1u1AQlrwfY8be2r8fJ4pz2xVuA5V/pv5PFJHnN99og/YkhLGjFRO181OM/L0/DwSPvIy0HOLs+v/xHYPbQU5AaVye/Pw+066//xg1aKBdzeORl5gK00MQln2oDr/F3Ygweo5lYTn4MmPdiYNvvbga6HqM92F79mjHHJOrR+sCqhN2TD+xfA3xt8kpfMcH/v8pMkCw/+ubZmnqbnY/9zwzRavXnB7QID9//2ggsGW9/XiPLvtTuCU8DMP9N+XYl27Tnz9xXK7brce0/36/9zuy3YrBkYbf+GSjcG1fL5mdA5Pcx4+HgbUbHu7U/yPU5Pklb6bHn1tPg12iKtEm+tonadeU9e0OuCz7+uPuAjI7ATwafpeVf+X9jphFyxfEF/666AJ+QAhRv1a9to7wTLNNELf9SCz1l/y8jKZPfzqi5+eIioP95/j5vni1eMLQ/XPvLHGNXfadFNbGx5vcXtd94wwz7vs99XvseT4NfNX/4xcCxEml0jHOB2deGcew9gUI4uy9snDlbugDQCYAxiHoXtARFPgghNwO4GQCO7OACpnIctC7k2AtZJjejoMBgNinGsf8HTL09+LiZnIdc1rHt+1sDP7vigxMAjfkB+Gw0cMs8IKUV8L++/LY8eP+XqG2rXlrUAo9UQ5nSKbeIz3fYRWIBYMtcf011K+IT/YOI75yC1bYMBzbw7wfGg6ZQQWOpUdm0r2Z+uFu877h7/e//bw3wikGZtf5n7WVHxyO0jGi88rGi6zPiHmD2k8BQ0yrenaL9zxtmBA9yMsLo4g/8zl1m7loKTPtXYMXHIdcDeR8HHsd7rqzIPQ7YppuyrK4tj+Pu85fTNrc9dJT/vcsFuASaPKtnwAivMuak6+XaGsnoqAkjvOf2BBuLaHp7TQDgRSGY01gD/rK8nYYA7+upa81t3ana/UeIP0QxLhG40yCUp3fQhAWn1zY5S9NGFazht00XOLNmGJ7bTb9oL/P3Gjn5MU1jysbqrK7a/8ATQJcLxkUzLJ2xEdFCwQzv2vY2VRAccBEw/SGgWo+cyegAgNreU4Q2m5SyziGEXAzgdErpjfrnq6FlK7xLcHwFAIGniC2ZACRzfaq2IbZtaf1VbWPTtqX1V7Vt3uc8GNv21mv5BEIpbbEvAMMBzDR8fhjAwxbH54VxrvdV2+i2bWn9VW3VfaHaqmvbQtpy574W7QQIYDGAXoSQboSQBACXAZgWpXNJGuVU2zDatrT+qraxadvS+qvaNu9zHoxtubRoEwAAEELOBPAqgDgAH1NKhQHPhJA8SqmTdF0KhUKhULRoRHNfS3cCBKX0ZwAS3lEAgPej2ReFQqFQKJoh3LmvxWsAFAqFQqFQOKel+wAoFAqFQqEIASUAKBQKhUJxEKIEAIVCoVAoDkKUAKBQKBQKxUGIEgAUCoVCoTgIUQKAQqFQKBQHIUoAUCgUCoXiIKTFJwJyQuvWrWlubm5Td0OhUCgUipixZMmSA5TSNubtB5UAkJubi7y8vKbuhkKhUCgUMYMQsp23XZkAFAqFQqE4CFECgEKhUCgUByFKAFAoFAqF4iBECQAKhUKhUByEKAFAoVAoFIqDEKkoAEJIjsRhXkppaXjdUSgUCoVCEQtkwwD36C9icUwcgC5h90ihUCgUCkXUkRUA1lJKj7A6gBCyLAL9USgUCoVCEQNkfQCGR+gYhUKhUCgUzQApAYBSWhuJYxQKhUKhUDQPbAUAQshIQsgHhJBB+uebo94rhUKhUCgUUUXGB+B2ANcBeEyPBhgU1R4pFAqFQqGIOjImgEJKaSml9H4ApwEYGuU+KRQKhUKhiDIyAsBP7A2ldCyAz6LXHYVCoVAoFLHAVgCglE41fX4jnBMSQj4mhBQQQlYZtuUQQn4hhGzU/2Yb9j1MCNlECFlPCDndsP1IQki+vu91QohVjgKFQqFQKBQGHKUCJoQMIYRMIYQsJYSs1CfglQ7P+SmAUaZtYwHMppT2AjBb/wxCSD8AlwHor7d5mxASp7d5B8DNAHrpL/N3KhQKhUKhECCbCIjxJYAHAOQD8IZyQkrpPEJIrmnzaAAn6u/HA5gL4CF9+wRKaR2ArYSQTQCGEUK2AciglM4HAELIZwDOAzA9lD4pFAqFQnGw4VQAKKSUTotCP9pRSvcCAKV0LyGkrb69E4AFhuN26dsa9Pfm7QqFQqFQKCRwKgA8Tgj5EJqavo5tpJR+F9Fe+eHZ9anF9uAv0PIW3AwAXbqoUgUKhUKhUADOBYDrAPQB4IbfBEABhCsA7CeEdNBX/x0AFOjbdwE4xHBcZ2hFiXbp783bg6CUvg/gfQAYMmQIV0hQKBQKheJgw6kAMJBSOiAK/ZgGYAyA5/S/Uw3bvyKE/A9AR2jOfosopR5CSAUh5GgACwFcAyCs6ASFQqFQKA4mHEUBAFige+aHDCHkawDzAfQmhOwihNwAbeIfSQjZCGCk/hmU0tUAvgGwBsAMAHdQSj36V90G4EMAmwBshnIAVCgUCoVCGkKpvFacELIWQA8AW6H5ABAAlFJ6eHS6F1mGDBlC8/LymrobCoVCoVDEDELIEkrpEPN2KRMAIWQ4NG98FWuvUCgUCsU/AFkfgDEA3gKwAZoqfgaldF/UeqVQKBQKhSKqSAkAlNJbAYAQ0gfAGQA+JYRkApgDTSD4y2CbVygUCoVC0cxx5ARIKV1HKX2FUjoKwMkA/gRwMTRPfIVCoVAoFC0EWR+AewD8BWAZpbQRACilNQB+1l8KhUKhUChaELI+AJ0BvAagj178529oAsF8SmlxtDqnUCgUCoUiOsj6ANwPAISQBABDABwD4HoAHxBCSimlYeUGUCgUCoVCEVucZgJMBpABIFN/7YFWGVChUCgUCkULQtYH4H0A/QFUQHP4+xvA/yilJVHsm0KhUCgUiighGwXQBUAigH0AdkMrxlMapT4pFAqFQtGiyNuXh8kbJjd1NxwhJQDoYX9DAbykb7oPwGJCyCxCyBPR6pxCEQ6F1YV48PcHUdNY09RdUSgU/3Cum3kdxs0fh+qG6qbuijTSeQCoxipoYX/ToUUB9ABwd5T6plCExatLX8X0bdMxc9vMpu6KQqE4SPhxy49N3QVppAQAQsi/CCETCCE7AcwDcDaA9QAuAJATxf4pFCHjpV4AwL//+jfm7ZrXxL2JPvmF+VhZuLKpu6FQKFoIshqAXACTAAyjlHanlF5NKX2bUrqCUn2UVSiaGR5Dduo7Zt8BJ5UvWyJX/HwFrvz5yqbuhkJxUPPUgqfQ4G1o6m5IIZsH4N5od0ShiDRek2xKQUFAmqg3/3wW7V2E1IRU9G/Vv6m7olA0KQXVBeiU1qmpu2GLrAlgaSSOkfiObYSQfELIckJInr4thxDyCyFko/4323D8w4SQTYSQ9YSQ08M9fzjM3TkXW8q2OG737YZvldo2SpgFgCfnP/mP1wI0FVtKt+CGWTfgsh8vw+N/P97U3WmWeKkXA8YPwJvL3mzqrigsaPA0YGPJRkdtzH5GLWWckTUB9CWErLR45QNoHaE+nUQpHUQpHaJ/HgtgNqW0F4DZ+mcQQvoBuAxafoJRAN4mhMRFqA+Oueu3uzD6+9GO2z05/8mDRm27umg1BowfgLF/jI3J+cwCwOSNk/Hdxu9icu6Dja1lW33v1W/MZ/WB1QCA91a+18Q9iQ0ltSUYMH4Anlv0XFN3xRGDvxiMC6ZdgP1V+6XbfLn2y4DPFP8sAaAPgHMsXmdDSw8cDUYDGK+/Hw/gPMP2CZTSOkrpVgCbAAyLUh+iQkuREiOBx+vBZT9eBgD4actPUT9fdUM1Zu+YHbR90b5FUT93uFBKMfCzgVi8b3FTd0Waem99U3eh2fPbzt+augsxZf6e+QCCJ8eWwoxtM6SP9Xg9AZ+XFSyLdHeigmwegO0Sr10R6A8FMIsQsoQQcrO+rR2ldK/ej70A2urbOwHYaWi7S98WACHkZkJIHiEkr7CwMAJdDObnLaEVRKxqqIpwT5onDZ4GDPp8kO/zodmHRv2c+6v50jshzd8H4MctP8JLvbh+5vUhtd9RviPCPbKntrE25udsKtYVr8Ps7cHCpR3TNk2LQm+aLw/98VBTdyEsemX1kj7WrG189M9HI92dqCCdByBGjKCUDgZwBoA7CCHHWxzLG8mDltSU0vcppUMopUPatGkTqX4G8Pqy10Nqt6vSLzOZJch/EjO3B9rHOqZ2bKKeoEU4Ae6p3ON7v7l0s+P2Oyt22h8UQRo8DVhaELYLUIvh4h8uxj1z73HcrqCmAACQGJcY4R4pIkm3zG4AgLSENOk2ogVHc6dZCQCU0j363wIAU6Cp9PcTQjoAgP63QD98F4BDDM07QytOFHN2V+4Oqd2ds+/0vV+4d6Hj9jvKd2DA+AFYX7xe6viyujKM+3scimudV3Cu99Tjrtl34aP8jxybLuo9gerhWITIiCb6BXsXRP3c4WK8n66Zfo3j9uX15ZHsji2DvxiM7zd9H9NzNgdKakMrhVLnqYtwTxSRhI0dxjBiOwproqNddsLby9/GrgpnivhmIwAQQlIJIensPYDTAKwCMA3AGP2wMQCm6u+nAbiMEJJICOkGoBeAJjfw5hfKFUds8DSELTWeNeUsAMBFP1wkdfwzC5/B5I2TccLEExyfa0XhCszdNRevLn0Vn635zFFbcypeJw+WkcX7Foed0OdAzYGw2seCX7f/6nsfymT+9IKnI9kdhYDKhsqQ2sUTp0VYWz7MH6Al4BMAWpBW9oqfrsA7K97BGd+d4aidbBhgBSGknPOqIIREarnRDsCfhJAV0CbynyilMwA8B2AkIWQjgJH6Z1BKVwP4BsAaADMA3EGp85mFUurI29OOpxfKDb5mB5Pxa8YLjowc4eTEX1G4wvf+pbyXLI4MxuwFvGDvAkzZOMVxH66feT3umH2H43ZOafA04MP8DyPmpOn0e8L1U4i1BqBHZo+Ynq+5YLb7ytIjS/u91hStceQHdP3M6/HqkldDOmdTkJ3oi9jGzb/cHBAp0pxhz5+ThcrhrQ+PVnekyD8gt/A0I+sEmE4pzeC80imlGSGdOfgcWyilA/VXf0rpM/r2IkrpKZTSXvrfYkObZyilPSilvSml00M574T1E3DqpFMjlr9Z1hnK/OD/vefvkM85otMIqePCWXm8tvS1kNvyeHXpqxH9PjMfrfoo5LZHfXUUXlv6Gr5a91VI7es99b774PgJx+PGWTc6an9mtzMDPjd3B7uOaU3n09GUOFkhbi/f7nvf4G1Ag7cBl/54Ke7+Tb6UyuJ9i8O6r2ON2dTx0LyW5RTo5Pomu5ODtjmNBKhprIm5kNRsTABNBbtIqw6sisj3NXobbY/ZXLoZzyx8JiLnA4A+2X2kjot3Na3qsXWyP1VEKH4ITgjHztqvVT8AgSsYJ5z53ZkY+uVQAEBJXYnj0MMJ6ycEfF66v3k72FXUVzR1F5qEotoi6WONER0N3gZ8uUYLjVu4T87357cdLSuEkFKKWk+g4Lq2eG0T9SY0nGgAeNogp/479829D+d+f67UHBIpZE0AbxBCXhe9ot3JaLFw70JM36opDiKVtjHOZZ+L6Lyp54V9HqOa96NVH0k51jWFAGD0aJ9zyZyQv8dovthSap9xMRz7XVZiFoDQvLX3Ve0Ly7eDJ4i649yOvydWOSbK68uxvHB50HYZx9j1xevxn7/+gwV7F6DB0zJypxtxYo4a1t6fomRv1V68vORlR+f6ZsM3jo6PBj9s/kE6h0edpy5oUmTPVXMnFBNAJPwF5u/V/CQu+fESR0JAOM+6rAYgD8AS/XWu4T17tUiMtmkXiYwypHd274h8jx3j/h4X8Fkm9ntv1d4o9UaM1Y3sJNGNMbRtR0Xoce4yeeqZ9iCUaIWRk0Y6bmPk8p8uD9q2rnidVNuMBL81bv6e+VEXAjaVbMKIr/nmpyfnP2nb/u45d2PKpim4adZNGPzF4Eh3L+o48akxXptQVnhu4lwIjDSP/PmIdBbP6sbqoG2RGmOjjdMogM2lmyMSBsvui40lG7Gvap90O3MKeifRKbI+AOPZC0CJ8bO+rUWyqXST732kQnNC0SSMyh2F3IxcR23MjosXTLvAts2S/ZGT1X7Y/IPUceNXa7fHkHZaZmejWt3oWGjHw3887HsvM5CIjpGZ1FmoIPPyfnXJqxgwfoBMNwN4f+X7jo4/dsKxAZ8/HfUpAOCFxS9ItTdqhW759RYc/ll0HZPm7RZHZMj4tJi1BE7zr7ckrPxJVhettm1vvJ9jqSIOleoGTQA48ZATfduKa4ubtWf9kv1L8HLey76w5W/XfyvVLhIaXbOwHo629viJVulzAglFJPtH5q+NlKNVKE46yfHJXInZCnPq1esPc5Y1zhhqJkPXjK4B3t6P/PmIVDsWdtcru5fve0Lpw4aSDb73MqV9T+lyCgDgpgE3BX0Py8nOw5h454n5TwDwX1M74cHcpzeWveF7LzO5ldWVBXwe1GaQbRtGU4Q3RjqcLdS4+pZOYbV9DLkxMqSpS83KaJbYeJYSnxKw/a89fzk+X1ldmU+giCbXzrgWn67+FEU1mm9HKH0NlV+2/xLw2Yn2Lpzorpahk4kBkfS0dvqAJsUnOb6I5v4aHex4mNVETldbXupFn1aBzobsQbFicDtNtXvHIM1eahzIQg2jAoCpm6cK91XWV+KHLZqG4qzuZ2FU7qiA/Zf9dJmwbUF1gXCf3TWyysD3Yf6Hlm3NDO8wXMqfhCEKJ5Mxs+yr2ofjJxyPbWXbpM8HBMbBH5J+SMA+mRWMuU1LSNMcilnF7j6XcfAzfkdTCwAy2lImZB/Z7siwz3fshGN9OU9iQTgTaqhsLA0cj534HzDhiC0YnGQ7dZoHoALA4YYcAJHMA9CkhGpX5j3cgz93Zs9cXrAcFfUVjtRj5ofQ7qb9ZVughOl0EKluqA6S5mWqGJbWlSKexPtsoEZVZjgD2d+7xSrmZxY+40sYFO+Kx7hjxkl/r1UVL7tViNXAmLcvT7oPgCYUOkEkAMjUE5ixdQZK6krw1IKnHJ2TaSxyknIw+dzJAepembho87MTaoKoWBLKPWv0hzi3x7lB+2WiRIy/lTmzZiwwaphkBID//P0fAFpa3QVXLMDEsycCgJSz55ayLZi4bmLQ+cNZMDihfWp7AMECajQxOxw7+V/Z2P/QsIcwtP1QDGgjb650mgcgHUBHAD31bRHLA9DU8CrHWVHdUI0J6ybgxIknhn3uozseDcCZGtf8ENrZXM0lSJ2straUbUFRbREW71sc4OQo4+ldUluCzMRM3/niDBWbjT4YTpm+TZz2wfg7xrvikepOlf5eK02QnZA1ZZM4uRHLA2+FcRBIiEsAAFxy6CXIScqxbRtOYSl2bRbtW+RogiutK0XntM74/dLfkRwfGAdtd39VNVQF3T9xTVfNWxrj5Cvb38kbJ/ve85yEZRKRGYWjWEdMLN2/FCd9c5LvsxN/qcS4RKS6U30LAJkkVXf/djeeXvh00D0dqVwtdqS4tYXOGd3ss+oZw5mHdxgetN/OvDNr2yzM3zM/yK/DiRbCaG7JSsxCVb38WCBtAiCEPE4IKQSwFsA6QkghIeQ/0mdq5nTP7O7o+Ef+fATPLHwGJXV+u+W080Kr9tU3py8AoKrR+sJN2jAJA8YPQJ2nLmiislP1mgd2Jx65o78fDQDYVr4Nr53sLCFQWV0ZspP8jn+xUPMaJ1KXfosf3kbOIc7si7GpZJNwn5nP13xuud9q5UYpDdif4NIEAHecW2pSthow7CYYY/5wJ5NLWX0ZN7SLgAT5M5h5ZkHk8mDEEqPvDTNvOYE3qTRSZ059sTQB1DbWYsyMMQHbnAoAAJCekA5AzuFxW/k2AFp+CWMETDSrXBonciZ4yDhbGv2YWBifUTC0c3S+7/f7cPMvNwed6/bZt9t3Woc9+8nxyUh1pzpKUS1rAvg/AMcCGEYpbUUpzQFwFIAR+r4WhzHM4qj2Rzmq/ATwb2SnnvwMttqra7R+sJgdeW/l3qDJSHaCY8imjjTaPF896VW0SXZWUbGkTtMAMFwhuJ04tbsaV6NMpf/lmV9icFv7Ads8kb694m3f+w3FG8yH257fiFXBkOLa4gDzA/NhcLvcUgMRS8Zz/5D7g/Z9uvpTYbvfd/4ekHjIyWT01+6/Ap8DvfutkltZJnqqbaz1/X9GWoIJwCik1TTIrdJG99AE6F8v+hWtkls5Pue+qn34c/ef3D5EG5bQyojdOGXE7dLCF5kA4KR0+ncbv8PFP1zs+xzNPALPLfSHhLNnSea5a5fSLmibcZEju+AxZw208kUyw0yTKe4UJMYlOhLQZEfjawBcTin15SmklG4BcJW+r8XBUi72zu6NjMQMR2oTgJ/4gRCCK/teiTS3M2EiKU6z97674l3L45hqqqzev7q6tv+1AIB0d7plWxaGx/hrt5yHq3F1eEqXU5AQl+AooU9ZXVlA6F8oscCiG1okGPBU6QBwy8BbbM+1YE9gtcDKer80zUIa7Xhg6APc7VYDtzn7H8PtckutytmqhbfCXHlgpbA/d/52Z8A2UVy/GabK5flMtE5ujdK6UqFPS2ldKXf7TbNuQnVDNZYXLI+ZvdcJefvy8OzCZ32fzZnuRHioB53SOqFdaruQ7n9zIR1zBFCs+X7T99Je+Uz4dxEXru1/LSobKqUdrvP2B/rNPL/4eWcddYAxeZcTAYCNyQDw4NAHAQQ64ck65PH8QL7b+J1UW6MGIFoCgJtSGmSgppQWAmj6DBUhwFYbjx39GNLcaahokE9n6vF6glZz1/W/DoA2+VgNDLxJi91Ev+209gZmK8viGv/q6r4h92Fw28G2F31f1T4M7zAcC6/wpx6dt2seBowfgMPHi7UHPHWjMeLAzla1v3p/wKpnaPvAFYVM+Uqj7c84gIoGQqMDnbGvvbJ6+d6LBrBZ22cBAHpm9cRxnY7zqfUAYHPZZin168WH+lcttxzuFzrMkRhGmPDHwiSv6HMFAM0E0EgbbSdEpvbjCZ8rC/kCgNkvhCEzuB+o1oaDp0b4HQeZMNAquRW81BtgHjNi5a9w1FdH4erpV+Oz1c4qTkabv3b/hetmXhfwjG4q3STluPvjlh+5/jJX9b3Ktu3+qv1B0SWX/nipY5+lUNhZzo9qGb9mPJ5cIE70xLJZnp57esCz379Vf1DQgLoIVvDMmtHQfnipNyCRD7uPZQQAY3+6pHcBAFzTz78mtnIqthtLHv/7cSntZ01jDeJJPNwuN5Lik1DnqZPWmsoKAFa/etOKoyFSXqetYDISM5DqTnXkRMXLqJeRqDm5bCjZgEZvo9BexRM0jE5qVqs9JgCsKtIesJ5ZPQFoqzGztGykwduAXZW7sHDfQqS4U3zerSyVqdVNaudbYBU6VlBdgIr6ioAV+XWHXYcZF/orIcqUr2Tx+ADw/ejvfe9F10yUwrdNit98IVpxM1LcKfhj9x9B20XJlEQD07D2w3y5CO6Zc4/t6ufs7mcDADqndwbgV6HaDRaV9ZWII3FC8wMPUeERqwQ/DKbi56lAMxO0VZ/IZCJT0nlN8RrbY8JlwPgB0qWTX1z8Inf7A/P42h4GT0C4sNeFAIAOqR0s29Y21uLUSafig/wPgvbdM+cey7aRwLwgMUYwiNJxf5T/kS+b5R+7Ap+fLhnaBGkVLnvX7Lss+yR65pfsX4KH/3gYjd5GTN4wGQPGD8CA8QOkNEmi/mwt32o7kRoXXinuFCy/ejnuHnw3/nvsfwFYXydjcjPGB6cFXutpm639yuo8dfgg/wM00kYQQpDmToOXeqWdCGUFgIGicsAAnKdIawY89IdWmSojIQM5STmoaqjCgPED8POWn20vOi81K7MvD2g9QHgMAMzcNtP3furoqVhy1ZIAAcBKE8EmA5Zh7vHhjwPwe9OLJpdFezX10o0DtKp0TpIGicobM8fFl5e8jNLaUu4x64vXAwg0P7iIy1G2RGMI1ZPHPIncjFzfJLe2iF9cROahFz0grZNb44TOJyA5LnAiZQ+mSLBjau2bD78ZAJB3VR7+d+L/MKzDMNw+yO/QI4r0aJvSFqNyR+HGATfiyWOe9GkRfAKAjRmgsqESqe5Uoc2RNxGZk48wZEwO32/6HgACHDyZIMkGaZHvwf+W/C/g811HBA/6doJMg6cB+YX5eHbhs5i0YZKUUOHrJ6W+zI4T10/Em8vetH3mRTkZftn+i6VjG7vexqRO7Joa/S14OTXm7pxr2adoYyz7fffguzFu+DjfZ5HAa6zyedvA2wL2dc3oingSb/l7zd01l7udaf5EUQQ3zroRP275EUd8fgTGzff3UybZmEhDtnjfYhz+2eFYXrCcu59SirvnaNUcB7cdjIFtBiLOFQdCSJCmkwfv+WPjKsMqffuaojUY8kWgaZfNJbILWtkwwDiLcsAt0gTAyEjIwJnd/eVXH/rjIRz+2eGWaiqzt/c3Z3/j8wi+oJeWkld0oy7eq62oPzn9E3TP6o6EuAS0TW7r22/l6WreN6jtIAB+NezQL4dyJ+O3lr8FQAspA4CLDr0I/z763wHH2A2Ai64MtFG9P1ITQhbuXYjjJh7Hbc9U3gPbDgzaN/U8LZFPqySxU9QNM2/Atxv86TjP63keCCF45CgtC+Gtv97Kbcd+e3PeAgD48DTNkZJnm6OUorqhGoekH4JO6X4h5eFhD+OwVocBAJ5a8BR3Nc6y2LEwr8S4RIzsqtUFiHfF+/rCu6/K6spQUF2A/q36I94Vj/N7ne8zYzAfBju7b2V9pU/9z5IuvXriqz6hz4lT0SN/PoLrZ16Pc78/VziQsERMRv8OJnid3/N8AMARbY+wPVf+mHyf0GTEyo9m1rZZGPzFYFzx8xX4at1XeGL+E7hj9h04YeIJQmEU0K7vx6s+DkqR/N7K9zBmxpgAfw9zu4LqAnRJ7+KLFnrjZH+Wx8t+vAwDxg/gnpuZQcb093vSs9+pzlPnWzjsqw7O/c5SUodDcW0xXl/6Op5b9BzumH0HRnw9QiqBFxPeAU1jcVnvywKKUokEzeM6Hed7f+1h1wbsS3WnYkCbAUE+DTzY7xJP4vHx6R/jzZPfBCD2HxE5J9/3+32W2gBKqS+r6cwLZwbtB4Crp1/N3W6MdHnh+BcC/I1YLgEAuOUXvu+RuT8vn/AyMhMzA+4t5jxp5sZZN+LSHy/1fT6ru5YoiZmTrRyOjbT4TICEkFGEkPWEkE2EELlKFQYS4hLQKa0TVlyzAl+c+YVv+zXTr+EOmh6vx2cvWnrVUuSPyUffVn6pja2IeF7Q1Q3Vvvh1NnkDmp13ziVzkByfjKunX821we6r2oedFTtx+8DbsfKalcgf4/fiZxcf4K/Y2eTTLtWvrr2k9yX44bwffDcYb2VqvEHNK7KspKyAz7xESgv2LkCntE7cOPbumd1x9+C7UVRbxD331E1TfY4xIzqNQP6YfN+gc3SHo4OON7KpdBN6Z/fGrItmBe07qsNRaJXUintt91fvR3VjNbpmdMU9g+/BMR2PwZ+X/Ykr+l6BtIQ030N9wdTgugtsYDKuiI28N1KztxtXJwxmVshJDv6d7DQAlfWVWH1gNX7Y8oMv18CtA29F/ph8nNL1FBzV4SgAwK5Ksa/FmH5j0Da5LcYOG4uMhAx0SuuExfsWY2vZ1gDzCw/jPcWEH/Y7GSMoGOxan5F7Bn65yL8Cyh+TjweG+NXpIgF6/p75uO/3+3yfh3cYjhM7nwhAe+au+PkKobDzwuIX8MqSVwAAndM6461T3kJ2YjbaprTFsoJluHbGtVyBZ3PpZpTWleLKvldi6nlTkT8mHyceciIWXbnIZ4YDgEkbJwW1ZYKh0YO9R5aWUjszIdOXpGpdUbDG0KhFTIlPwU0DbgqI8jjv+/OEXvVe6sVLi1/CCRNPwAf5H+DLtV9i3q55KK8vx4nfnIgRX48Qqr4r6yt9qutze5yLcceM80VJMTMAuy/NMLMZq2NhZniH4VhTtIZbQprVF7lz0J0Yf8Z45I/Jx7JrlmFo+6G+e4qX72Rv5V7srdqLewbfg9kXz8avF/2K/DH5OLXLqQHH8WpqsDC9I9oegY5pHfH6Sa/jsFaHYcEVCwLGWF5JbqNfR9uUtkH7Gbw+G7W11x12HZZctQSn5Z4GILB+Am9sXF6wHAv3ar5cE86egPwx+XjuOC2KgZl3ZYs2tWgBgBASB+AtAGcA6AfgckJIP7t2vAnWRVwY2GYg8sfkY9I5k1BeX463lwcPYEyFf+OAG7llWhPjEpHmTuMOQt+s10p6fn7G50GpUlsnt/atyj9Z/UlQ23dXvAu3y41ze54bJH27XW68d6o2wbD4cSNFtUW+QdJIbmauz9nMWBmRwUr5/mc4P91D/ph8fHuOtkI3Z7pr8DZgyf4lOLbTsbymAPwrRHMJ3NLaUjy76FlkJmZiwRUL8O6pgdER7VPb419H/AtAsKBVWluKNUVrcFSHowLCD40U1RYFJGdhsFVP75zeyE7Kxnsj3wv4jp/O10qhsjhlI2ylZ1wRG2FVCFPjg5MSMRXjyYecHLSPDbSfrfmMK1Re9MNFvtTGvBVO5zTNl8DsVMcG4LsH3437h96P2ZfMxpV9r8Rfl/+FGRfOwMwLZ6JVUitM3zo9aCXKtD1mU86dR9yJ8aPGo39rf8VFcz4AVtPhokMvClglAcA1/a9B/ph8jOg4ghs/XVRThHvn3oueWT0x79J5yB+Tj/dPex9vnPIG8sfk49NRn6KguiCoUiYA5Bfm44u1X6Btclssv3o5pl84Hcd3Ph7zLpuH2RfPxpsnv4mNpRsD6jcwvtv0HeJJvE+jw0iOT8aU0VOw9Oql6JTWiTtJsJWYUQi+pPclGDd8HC7pfQlyM3KRk5QT5MPj8XqwqXQTru53NeZeMhcLr1yIfw3+F8b0H4M/L/sTDw19CJvLNuOhPx7i+uG8tfwtjF8zHmd2OxMvn/Aylly1BIuvXIx7Bt+D/q36o7y+HNfOuJartXj4z4exq3IXru1/LZ45NjBfw7jh43Ba19Owq3JXkMmRhVYPbT9UmAL4yHZHgoIGhb2V1pbi2YXPIo7E4Zr+wYFlPbN6YkTHEfgo/6Og87Lf7thOx6JtSlufUPrKSa9g5TUr8ffl2gT85dovg7535raZSIxLxDunvgMAOKnLSfj67K99qvSFVyxESnwK12eILXpeOfEVrkbEqFEwa0g/W6M9j++c+g7uPfLeAO0B4HeW5qUQ/3jVxwC08urm6qYD2wzEWd3PwtayrUITqZHYF4iPLMMAbNJDEkEImQBgNACuB1FFfQV+2vKTb8IRZXrqndMbo3uMxtTNU3F0h6MDnMpeWPwCcjNyuXZLIxPXT0S3zG7weD1opI1o8DTgzeVv4sh2Rwas/o2c3f1sPPLnI3h3xbvoldULjd5GeKgH5fXlmLxxMi7odYHQfn5Mp2PQO7s3lhYsxZSNU+ChHjR6G1HbWItNpZtwXOfjuO2u6nsV3lv5HmZtn4Wv130Nj9fja8smOqP3fNBvld0bOUk5mLltJlITUrX/19uIpQVLUdNYE1AH3Uz/Vv2RGJeIaZunodZTi0ZvIxq9jZi9YzaqGqrw3bnfCbP4Hd3haLy+7HWMnTcWFxx6ga8tW0UMbBNsdmCcnns6Zm6biW/Wf4OMhAw0eBvQ6G3E95u+RzyJx6HZh3LbJcQl4Mq+V+LLtV9iysYpSIpP8p2X+SrwVvGApuU5o9sZmL51Or5c+6XvvqhrrMMnqz/BcZ2O4+aiYALIZ2s+w2drPsPLJ7zsuz6N3saAVQhPhckm2bm75mLWtllaO9roc9AT/a8d0zpi2vnTMOJrbdAtqyvznZP5nBgjHADN1MFMYW+d8hbumH0HXs57GUe0PcL3GzMBmhWH4nFMx2PwYt6L+DD/Q3RO7+w778xtM1HdWI3/nfg/rqblyHZH4taBt+K1pa/h+UXPo2NaR98zNHH9RKS70zHt/Glce/4Jh5yA83uejwnrJqB/q/4+EwQFxVdrv8LwjsMDnEiNuF1uHNvpWExcPxHfrP8GcSTO9zszwbpjWseA3+nCQy/0fR7afijm75mPL9d+6etvaV0p6jx16J3dOyh3QGZiJq7qdxWGth+Ki364CP839/9w68BbfffUvqp9eH/l+zi3x7l4esTTAZPTDQNuwA0DbsDqotW46qer8PCfD/tMg4CWH2Tuzrm4Z/A9uGHADcH/a5wbFx56IWZtn4VXlryCwe0G+64Pi5hhwjmPAW0GIN4Vj2mbp6G6sdrXdvrW6ahoqMB3537H9f8ghOCKvlfgrz1/4bWlr2Fgm4G+e2r86vHISMjg3lOEEKQnpGNk15H4Zfsv+DD/QyTGJfrO+8v2XzCk3RDhOJPiTsE5Pc7BxPUTMaLjCCTEJfjaTtqgaXxEY2vHtI54YMgDeDHvRUzaOAlp7jRtTPbU4r0V7+HYTscKF0gfn/4xhnwxBHWeuoDntrC6EHN2zsH1h10vrP/y6FGPYu7OuXh5ycu4so91unYS7Zrh0YQQchGAUZTSG/XPVwM4ilJ6p+GYmwHcDABJuUlH9hynqez65vTFJ6M+EV74DSUbcOkPl3ITo4wdNhZX9hX/sO+teA9vLn8zaHscicOrJ70aoOIx88ayN7hlZF3Eha/P+hr9WokVHC8uftEnWRpJdafig5EfCHNEX/rjpVhTxPe6bpPcBj+e/2NAvKuZsX+MxU9bfuK2/fmCny3z2t81+y6u48/Jh5xsmXXQ4/Vg0OeDuPuO6XgM3j31XaGdcl/VPpw95Wxu6OSVfa/E2GFi9dncnXNx129i4c+oNjQzY+sMrtd4vCse7576rk9db6S6oRpnfncmimrFdtvEuERMGT1FmLv8y7VfcjU86e50/HjBj5aphh+c9yCmbw1Ou9wxtSMmnztZmECror4Cx3x9DHffUR2O8vli8Kisr8T5087n1kQ/t8e5QatSI2V1ZTjzuzO5JoTbB96O2wbdxmmlsbVsKy6adhHX3+KpEU/hvJ7nCdvm7cvDdTOv4+4b3mE43j9NXBr6h80/cKtrJscnY/I5k3FIhjgn/Uf5HwU43jFyknIw6ZxJQqEFAP678L/4et3XQdvtnltKKW6YdQM3QqhnVk9MOmeSZSGrG2bewI17P6v7WT5VNo+axhqc+d2ZXLX4pb0vxWNHPyZsW1BdgFGTRwX57xAQPDXiKYzuOVrYdl3xOlz+0+XcsEC7cWpZwTJcMz1Yo5HgSsD7p71vWSzpj11/cDMCul1uTBk9JaCyqplXlrzi0xQAwKprVy2hlA4xH9fSBYCLAZxuEgCGUUq5I7QetbCet0+CTADW+U1V23DbtrT+qraxadvS+qvaNu9zHoxte+u1fAKhlLbYF4DhAGYaPj8M4GGL4/PCONf7qm1027a0/qq26r5QbdW1bSFtuXNfi3YCBLAYQC9CSDdCSAKAywCEVpHHnuDk5aptpNu2tP6qtrFp29L6q9o273MejG25tGgTAAAQQs4E8CqAOAAfU0qFBkJCSB7l2EEUCoVCofinIpr7WnoUACilPwOQLTEl9sRRKBQKheKfCXfua/EaAIVCoVAoFM5p6T4ACoVCoVAoQkAJAAqFQqFQHIQoAUChUCgUioMQJQAoFAqFQnEQEvUoAELIYInDGiil4hyq8BX+yQOwm1J6NiEkB8BEALkAtgG4hFJaEmZ3FQqFQqE4KIh6FICefncxwCnA7qcbpTTX5nvuBTAEQIYuALwAoJhS+pxeBjibUvpQpPqtUCgUCsU/mVjkAVhMKQ2uc2qAEPKbzf7OAM4C8AyAe/XNowGcqL8fD2AuACUAKBQKhUIhQdQFALvJX/KYVwE8CMBYzKAdpXSv3n4vIaQtr6GxGmBqauqRffr0kem2QqFQKBT/CJYsWXKAUhpUGjImmQAJISnQzA1VIbQ9G0ABpXQJIeREp+0ppe9Dz4I0ZMgQmpeX5/QrFAqFQqFosRBCtvO2x8IJ8F/QqvZRQshiSukrDr9iBIBz9Zz/SQAyCCFfANhPCOmgr/47ACiIbM8VCoVCofjnEoswwDEArgBwFYCrnTamlD5MKe2sOwleBuA3SulV0Kr+jTGcY2pkuqtQKBQKxT+fWJgAXgDwnf7+1Qh+73MAviGE3ABgB4CLI/jdCoVCoVD8o4mFE+BEaPH6kfiuudC8/UEpLQJwSiS+V6FQKBT2VPz2G4re/wBdv/4KhFhFditaAioToEKhUChs2fPYY9h1+x2oWb4cG446uqm7Y0vtmjVY26cvdlx/Q1N3pdkSdQGAELI0EscoFAqFomkoeOkllE2a7PvsLS9vwt7IsfWCCwEAVX//jeolS5q4N82TWPgA9CWErLTYTwBkxqAfCoVCoQiBog8/auouOIJ6vQGfiz/7HClHHtlEvWm+xEIAkMm844l6LxQKhULhGOppecNz7eo1AZ+rlyoNAI9YOAFyExAoFAqFovlT+Oprvve9/vwDG489rgl7I8f2K68M+OwpPNBEPWneKCdAhUKhUAgp+uADAABxuxHfurVvO21sbKou2ULr6wEAnd54vYl70rxRAoBCoVCEQP2u3Vjbp6/v9U+n5+9zAz57Kiqifs6aVasd/8ZGk0XGyJFI1m3/3pqaqPSxJRNTAYAQ0pUQcqr+PpkQkm7XRqFQKJojm089tam7EBKNhYWo37nTcbv4nJyAz2Y7O4+a/PywBKSy774L+NxYVGTbpuK3wOKymeeeCwCoXb06pD78k4mZAEAIuQnAJADv6Zs6A/g+VudXKBSKSFE2bVrQtsaSkiboiTO8dXXYeNzx2DzyNKkVvLe6Wrivfstm2/bbLr7E97508nfw1tbKdZSdY1egoLLr9jts2+y+618Bn0mcNs0VffyJo3MfDMRSA3AHtMI+5QBAKd0IgFvCV6FQKJozex58yPfela4pMhv372+q7khBGxuxfuAg3+cNQ4fZtin9bkrwxnjNd7xh9x5hO299PTafcWbAtr2PPor1g46Q66xO1bw/Aj7XrFgh3bb9uMcBAGknnQQASD26+ScvijWxFADqKKX17AMhJB4AjeH5FYqQqV66DGv79EVjYWFTd0XRxBhtyT1mzsAh770LAKhdt66puiRF2Q8/Om5Tm58PAGh9++2+bZ1f1xzrisePF7bb/9//on7rVu4+WU1JQ4G/wGuftWsAPfWwOcZfRNallwIA4rKzAUAlA+IQSwHgd0LIIwCSCSEjAXwL4IcYnl+hCIn6nTux/YorAAAbjzu+iXujaGpKDXbphK5dEZeVBUDLONec2fvww0Hb7CbTsqlakdWkww7zbUs78QTbc5VOEJd/adi1y7Y9AOz997997wkhSOzVC4C1poVS/5qS1SogLhdIcrKUyaI5UDr5O3jKymJyrlgKAA8BKASQD+AWAD8DeCyG51coHEMpxeaRp4XUtm7rVqzt05drL1Y0D2hDQ4CXuUxom7tDRwBAxtlnAwASunTR/h7SJXodjSAdnnnG9/7AW29LtUk77ljfe+JyNm30nDsn4HPjAbmY/Krf5wV8bn37bQAAj4UGoeC557nbkw49FI1FxVLnbSoK33gTa/v0xd5HH41ZrYWYCACEEBeAfErpB5TSiymlF+nvlQlA0axZ17df0LbGYrmBZItuA93z4EOo+PXXiPZLERnWDTg84LNHIsf9Ll0dnnXhBQAAEh+PuOxsNBbFJtkMpdQnsDTs3SvVZv8LL/reZ15wPrIu1qqnF334oVR74nYHbxQIAsYJvu+6tXC3b4/ciRPQ/eefAAA1S5fZns/oLHjo4kUAgPh27QAADXvEvgfMLJF9zdUB21NPOB6e4mJLp0bfuaurUfjGm/BUVtoeG0kOvPVWTM8HxEgAoJR6AawghLQMETkEir/8EjtvuTWs7yj66CPsuvueyHRIEXE6vqgNoo0G26Qsu+68y9GAQhsaUL10qeVgpwgPXopbO0e++l27fe/Zyh8A4lu3gscmRI1N2qXff++soyaMQummk06WalP88ce+94QQtH9iHAAg25Qxz4hVCuDM889HfFu+D3fFr7MBAGkn+E0FyQMHwt2pk9aXTz+17W/Z91N97+N0J0tXUhIA7Vmyo9399wd8jsvUys3Ubd5i23b94CNx4K23sGHI0JjlDqjmCEX1kqaScIilCaADgNWEkNmEkGnsFcPzR43Syd9h/1NPo/L331H5118hfceB995HwYsvoWLmzAj3ThEJev7+O9wdOwCQEwB44U7UwWCyZfR52H7Fldh08inynVQ4ouDFl3zv00eNAgDsF6iQGZ4DfidQNqEBQFx2Dir/+FPYrnTK9773e8cG2+JlqRM41snS9sEHAfjV+CVffCE8tvGAJtC0uummoH2u9DQ07tvHbcec7XKuuy6wTWIi3F26wN3Ffh1Y8mVwvxJ79LBtxyAJCQGfWQ6Dwldflf4OAFh/xGBHx4cK8zEysvnUkVE/bywFgCcAnA3gSQAvG17NiqKPPgZtaHDUZu+jj/re77zhRtRt3OioPfV6UfjKK77PDc08nOhgwTjYutu1RZw+iIi8m43wwp1k1MuM+i3+lYq3rk663cFK3ZYtWDfgcFQtWCDdxrgS7fTiC9r3rF9v2Yb5CGSOPjdguysjHbS2VniteA54obDFEFrHBBA7S6pRGM257tqAfSxlLo/qvMUAgIbdwSvRssmaI2TBK68G7Sv/QfPtTh54eNC+xF69pMwWdRs3AQBcGRm+beZJ3YxVcqPU47T6BVU2C7TmnN44GsRMAKCU/s57xer8Mmw84UQUvPhikF3QKVvOOdf+IB1KKdb16x+wrfzHn8I6vyIyFL3/QcDn+DaaynP/s8+F9H1bzjrbdrAGgNq1awM+yzpqHaw0FhZiy5lngTY0YMe11zm23eZOnADidiOuVasAb3fuuXT/j5xrrw3Ynnr0cABA5e+xGdIyzjwTca1bAQAatlvXWyv/yT+eMM94AIjXNVoi6rdogm76aacH7UseOBAAUPTeewHbjVEFruTk4C9tbAStrg4wpZgxmh56zJzBP4bzHJV8+RUAoP0TTwTti0tLE57PyLrDBkgdF0nMfgndf/4ZAJA8OPrah1hmAqwghJTrr1pCiIcQIr8kigFG+5903mlj2Iluo3LClrPPCdpWMXu2o++o27w55g4rBwNlU7QkKB2eexYA4EpN8e2rmDtX6jsOzVuMLh/7a6mXGVTBIraef0HA56T+/QVHKoDg0Mx9//mPbZva9Rt879lkltitG6r+FKvxAWD3v+4GAF/oH4N9ZvuDiIsDAOSMuQZwuUIqsWvMZNfx5ZfQ9p57AAB1mzZZttv7qBZslXrM8IDtqbqnebk+4ZhhTmkpQ4cE7cu5/npum4pZv1j2JWWYlnyoYbdYADBqv+L1GH5G1iVaZkEPJ5KAaXSoh7+KZ6YHmSiEtFP9pjeZ9MPhYMwf0WflCiR274bkgQPhSkqM6nmB2GoA0imlGforCcCFAN6M1flDQSbhhNFm33vZUt/7PZJ2vvrN/tjUnnO0HNapx46Q7SLW9umLLWedjQ1DhkonyFA4I+NMTe1qXD0Z35sxXoe4tDSkHnOML1vc3kcekT4vc6La//TTjvp7MFH2U7C2rPzn6bbtto4eHbStOi8PQGACGhFmB7iMMzQfgvgO/FW1KyUFSQMPB/VSwOtFzTJ7T3gj3ro6FLzwgu8zIQSJPXsCAGrXyiUgavOvwBS5zFS5+977LNvFmWoAAECaYIxiv6GoCl/aSSdq514v7rOVBrX0m28AALvvf0B4TPbll3O351xzDQAIyxkbTb+d33gD7o4dA84ZLcqm+l3hmJkjLjsbjaWl0t/hra3F/mefc5w/oMmqAVJKvwcg58IaA4o/+yxoW6XEKq9muZaaMmng4SCEoOvn2veUSXj6GieKtmMfglsfPEo++1yix8DeceMCPptNCYrQMWp2XAbbY6tbbtHexMUL2+57fFzQtkMXLZQ6rzFLWud339G2qeyDQvbc5/f27r1SPk0sI9MgCCQeeigAgEqEihF9RW/8nDzkSCQcckjQsd6qKngrKpB2wgm+ibN+2zZQSoPMPSLqDKtEluI2Ti/N662Vcy5N0jUdvs995bScVsKuGRa1km6IADDi7twZgOazYUfuN+JkQtULA58nXgIgM9lX+h3teBpeo+mXEILO72imNyYIRIvSidr/2cngoOhKSUHdGrl7g1KK9YOOQPH48Sh4+X+Ozh1LE8AFhtdFhJDn0IxSAe//77O+910+1VRtMoUnmNqpvb6ySx4SrC4TYZywWxlsih4Jya86L4+bbSsWJToPBoxZyIykj9Q8c2m92DGv9Ntvg7bJDqIbhx/DbaNSZliTOfrcAEFNlg7P/tf3vvVtWhhv/Y4d3GOZg1hiP/7EGZeR6VMXN+ze7RPmCt/QFJ20psa3mt772L9RMX06tp5/gZaAyEZ7t+0Kf7he9mWXAfDfH6XfThK2a9jv12aY78F2D4/V3sQHC7My91v21VqsvdGRsFKvxCdy2HMlJMCVmYk6gdbCaBpJPjzYF4s5X6adHLh2bNQFD5YrgAchBB1ffEG43wxbkNWsik0VwbTj/ZoJZpaRWdEbw0KdaitiqQE4x/A6HUAFgGA9XBOTdfllSDnqKABAfPv20u0SemjqOCfSMiN5yJH+90ce6atfbcX2q67mbm8sjE0ykn86ZZMmAwDSddUuw5WoDWyFr7xim1TEXD89aYDmYGRnswX8OQda33UnADmh8GDDOEmZbdJWNnajF7oxqx1Tpe8UCP7MRyjrvPO4+yt/+w31mzejfvt2bDrlVJ8wxxYJqSOORVI/bbBO6N4ddVv80SS22jv9/0kfGVyC2GsRXVK9WPPkb3XTjUH7XCkpSD9jFFdrwTQOJCUlaJ/vu3V1/3b9t5ct1OMtKxMeW/TBB9ztjPZPPQUAQX2u130KOtiYyzLPOQdZl2k1AoxCl1Hzxky5zGxnFSoZLkZnSJfht8446ywAsI0oa+CEYu5+4EFpH5NYCgAfUkqv0183UUqfAdArhueXos2dd4IQIuXQZ/yR49JSfe9b/0tLVFHx25ygNowavcgGAOQabrCaJUtQ47BoxaEL5vskW295bHJIt0SKPv2U+8BY0fG5QI9/kqg55tRt3IQD770fdLwxFMltWo2wwio8x08gcDDIPEdLM5vYU3tE6iWEhn8CXouwNDO7DTbtpN69AfgnOquVkygRTVyO7nAmCAXbdIo2+drVld98ul9oNE4yKUOH+EwH9Vu24MCbzl2g2j/+eMBnl57gRrRi36MnxIlv04a7Py4zk/tbsRwATCvCo90D2nfX5C1B3Zat2HbpZTa9D6Sa4wdR+OprAAInQyNMy2MuRFT0rlaQKS4zI6iNmYTcXACA16AtNWreWPQCIQTuLl34WRAjRO2qVdzt7D62M/9tOvGkoG3lP/yACl0TY0csBYA3JLc1KfGttNAaWlsrTHTBaBDEnbKLtstQQcuMsU42D6v4XGOGqF5//Ym4rCwkdO0KAKjbus3yeyNB1YIFvqxmLYHaNWtQvWwZCp57HptOPAm7RJ7aHFyJgZ64RtUm5cR8W9UNEKmOGcZsbQw2cJfqGolYQCnFrn/dHdMshA1792Jtn75Yf/hAVM2fL9Wm4pfg9Mos45tVtEXxeM1Phzl3MnKuusr6hLqqvJ3AkTPO5LEOBK7s2eSf0KOHr7KdEVH+kT0P+UsPx+t2f1+fdTW8VX58QJzxLy4zC56ysiABYp8uaKQJbPmA3wcBALaYfksrmHZr1623CY/p9cc84T6Gsc+sL0l9+ti28xRrvxXP/4JVdmQk5HYFra+XSiEcCgfe18Io29x7b8B2t659rpgjXkRase/JJ6WOi7oAQAgZTgi5D0AbQsi9htc4AHE2zUEIOYQQMocQspYQspoQcre+PYcQ8gshZKP+N/jpk6Rq4aKgbXaSNQDsuDE4QxYAZJxxhu+9nW2vw9NPcbdbpQTedpnfy5UJLExqjVTCESt2XOvP8LXOYX3vpmDrBRdi++V+B6CKWbNQu2GD8Hh2zVM4/hzEIBAQk3Bg9B7vxMk41m2S31bLuy9KvtLimI2lV5N0oSG+g7w5KhxofT3W9e2HilmzYpqF0JjSdsd1/BAzEcboGxaOV86JDjDDwjsZRJ/gzSF+5u9mQoaZHjPE0QeZF/pDO5MHDAD0eyxpwACfY6monDDzEjeH8QFAQhdNFV4+gx8vzzA7LTLiMjMBjwfeqqqA7Uz4Y5EG3O8MwdwJABlnn6WfPLBPxlBmV2oq7Nh6wYU+f424tDTEZWbaJgsC4KsqWPzFF6jftTtAk2sWeDJ1VXzVAjknXqcw016r6wOzJsZlZSEuOxtV8/4QtjWOIb2XLUWuYXzxSJqCY6EBSACQBiAeQLrhVQ7gIon2jQDuo5T2BXA0gDsIIf0AjAUwm1LaC8Bs/XNI7LorOLe0V1eLVVusRlhZy07/C0xomKrHugJ8e6/RBpl54YUB+7p8pqm2UgzfYYbFwLKIA0CzKTKs6n5TSlH4+uvSNbnNmFf9lJPytjkhEuC2nit2P/GVdeUUOzE6mlWa1GzG2Ob004M1AcTlQtblmprUmPnRjNGezQY0YhF1YKaxuDhkx6V1hwd6ihfGoEBJDUelzkulbMSYVdGYcCbjHM28IjOBiJwGPaWlQRMiACR06uRTH/MQCQZAYKVA5gcAABmnn4bUozWfo+1X8FfpjEM++ihoG/PkL50Y7Pxl9xsCfpW5V2Aysar8ZxxzjHT96kvLczLBwWMqqlU+XROgWKSACGabr1u7Flsv0MZPT1m5b9FmR4b+bFb+OhubTz2Vq0ZnpOgJnmocRpiU/fgTCl591dYW37hHmwsIxxEz7ZSThfciAOx7wr/KdyUnI/mw/uj0qjauyAhCQAwEAD3j3xMAjqaUPmF4/Y9Sapszl1K6l1K6VH9fAWAtgE7QHAiZIWg8gPNC7SNzoun02mu+bR2e0ZxJXBIZpNINK35Gu8e05Bs8Naoxk5xZima2TJHzh7ESXcrQof7vMUjTtevE4SNF776LA2+/g43DjwFtbET9rl0o+uRT4fEyWCX14FE6eTLKZ8jXPDBWP3PKgTfEdlbRAFny1dcA+A+R0SmqbuNG7LzNv1rfcYPf0Uq0OmJahaIPxFXYjP4kxOUCSUgArZMXtDYeMwLbLroIG46Rzychwur3ixTbLgxeB9QsX27ZZs+DD3G3M5MNc34zU/mndSpY9rybKz7WrFiBmhUrkKg/n05JHjTI995opyZut8/pmDY0BAnmxgUE755iq1leCmNeOmozTGgxRgvU22QW9PVHoFXgee+L2Hal3+zCwi8P+SDYt8aIceHj1bUGnvJyxGXY2/+B4OeamWy7Tfku6Fh3Oy3fQ+2aNVLfDWj+XXvuvx9F776H8h/FizE72FhROY9vDmHhgxnn+n2KMkaNQub554PW10st8mLpA1BNCHmREPIzIeQ39nLyBYSQXABHAFgIoB2ldC+gCQkAuKWpCCE3E0LyCCF5hTYOFemn+NWQLCaYOcOYMa5AeA8mk+h4oXrMQYM9+EbYAFT2XfDNCPiz0/Fg9mI2gZkp/uxzFL7mT9Cx8fgTsPnUkSh4/nmpHOpGadYYTlP4Oj/ph4i9jz6G3XoWMxmMzjpr+/R1lG71wNuBaXT7rFyB9k9pkrPI1sw0O23uDvYVIIQEeFRXzpnjy/+ecoQ24FrFLzOVoghzeBOgmRq8dXLOcTtuvtn33lNc7CjjXMH//FqJXn/7J0rZEMS6TZtQ+fvvaCwulorzBgK1YUxoBgLNTDxYjo64Nq2Fx/Dyuts53rGwQK8pnHb3/2k22opfrDPdtddzcxzy/nuA7jzW7uGxvlU+gICVakL3HgGr7J03+a8f4Hc4bHXjDZbnBQIdi410/8lCI6j7GhmL0bD7mf0vVrR/Uku7m9S/P9rccw/aP/UkdzVrpvXtmv3f6PDM7Ox2cfdG7U7aSdrq3VNeJi0AAIYQSAOivAjurl0c+QAY/TGq/v5b6JBq94yk62NB6XfiMR8AOj4fWMCKmTGq/hCbDxixFAC+BLAOQDdohYG2AeCL6RwIIWkAJgO4h1IqnUKYUvo+pXQIpXRIG44nrNHxxnjjMtu6yJGv6JNPuNsZTAXMs9sxL+MunwQ7fRmlat7AyyqYtbn7X0H7uusqNFHVuf3//W/AZ6MKTiZFrdHpMfOcc5Crx7sndJev0lVpuCllK5ttGBYoKO285VbpVYqR3AlfgyQkIFUXvAo4ld9q8lf5VlNJh/FDs9reF5g5rWyaZqOtWblSazdALp+48bco0j3TzWYFACBJiahetMjSMZRhthlWSgwCvj687195xefkoK3ufGbnYMbYcvY52HnLrdh4zAhsOfMsbolTM0bbf9qJYoczEd05gjLL51/OqazJNAtdOdXmAC2WHwA8FYGptVlUUNt7/8+yP9mXXYo+q/KRdvzx6Ju/En3XrUXOmDHccwBAUl/Naa2PrmKuXbUKa/v0xW49wdGeh7SJylxZj4dZeGBYVdEzCiO1+n3PNHp2qngAyL7kEvRZlY9ukyeh9a23IPvii23bAIFZCZlmr3bdesRlZgY53poxhgCyBZO3rBwuiQgARs6YMQE+Gz1nBzuUMhq270BNnn1klqeyErXr1mHnzbf4tpVNnYaNx/Pva2+VJlS0upl/3ZhAU/XHH0FFpoyCvXkBmjpCi2ioyedHGBiJpQDQilL6EYAG3SxwPTSbvi2EEDe0yf9LSil74vcTQjro+zsAcF6kHfDV5jar9uJ0AUBE0Tuat2jWpZdy97OLV/zp+ICBO+DCWdjXAGDD0RzhQafVrcHhOcZc9VYrP+ZnYKRs6lTOkYFsHhVo6kjs3g0A337Fo3b9+oBBatdt4igJ274YQq1EGHN491mV71PDsoGNJ0QYEwBZOTn1XuofEPb9W8s9nzz4CCTk5to6R7W9XxMgjL9F3QbN5MOrse4pPIC69euxk3PN7QglOU7HF3TBSBdAeUKJGd79VjbN/p4y4u7UyaedAcTVE42hnLzwto7Paya2A68HBhkZBeoUQa6NuHRtQtlhmnCZdjDnBvuVuN3zwFTQ8e3b+7z6zWrp8p9+Crg/4y3Go0P1eHxPaanPZCCbFjz1GH/429bR52lt9QWETEgdIP/8W7H38XFoLCyUtl0zWOVBzQQg5wPASMjNRe/ly9B7+bKA0s5mfPUL9ltPMbtuvwNbzzs/aDsvWgjwh6qmnXA8dz/gF2bXDxwUcP+KHEYBII7lL/jcPqNsLAUAttTeSwg5ixByBABbEZNoo+lHANZSSo15DqcBYKL1GADORhsdNnizH41hJ4WyC8PScpphK/mGPXuwzeCBLpMiOHey5s1pdswJ0FbwzA6GbeZEG0abZuqwYb5zsDKZTuiix+CSlBQgLg6eCjmFDBtgeH0SYVk1zGaQM0ZpGAepwOQvgf4SzKZqhzlOee/j41CzOE8qbWirG/0mBDZxJuiFSnr8MkvYrupv6/A4o5qymy7Q7bj+BikzwNZL/IJs5rlatrXUEZoPgbfWvhxxxa/BBazswvnKDer0hO7dQQjxnRsQF6mx+x3c+grRLODZhfUChsgOrzfAD6GxqBjx7dqF7PluJPHQXkg74QR0eunFgO19161Fm//zaxiYkGu3+jf6jLAcE8z3yKx9MEMI8SXGATSzCctB73aQCC0U+qz129VLJ05E7dq1Ab4Slm1X+c0dJRMmwFNa6s/j4ABXUhJcNjlfmJlhz4MPWh5XvSg4msyKsu+00F5e+CjDqCU2Zvxj6eJZojARdua7WAoATxNCMgHcB+B+AB8CsNanaYwAcDWAkwkhy/XXmQCeAzCSELIRwEj9c8jwHE+YdMybqFgCB5kBwZg4hFXm6vymOAVCsqH62/4X/YMEs31beSJn6So4c6x7/bZtAIB2jz7qO8eheYvR5YP3/XXFBXHIgGn1dMQgANr/HpeeHnKWOm95ORoMFRh5bD7Vn/ms97KlPt8MgB/Ha4T9z8yh00i2HvO99fwLAv5vtqLos9pefWa0I5ZOnAhv9f+3d97xUdTpH/886SGEEnqVTkIT6XbA3nu9Q1HvFMX7yd1ZTk/vvFPvxNPz7hRFFOxixQpWQBSpobcEQi+hJEAIkL7P74+Z2czOzszOttld8rxfr7w2Ozvlm+zufJ/vUz7PcVAjkxaoJqT1UNyyBX37KTfdg6VIysoKaHiWTJ5s+VrxX+qN0VRdq9eCvvYtbgGgUg1f+Iyxk2Kf1xTb6wEwM3br8iXS8/LQ9IrLUbN9h20m+u7f1buBu32l/N+T0tPRc74StqiwEEnRGiqZtX0FFK+HliB75Lt6g0qr//d6OEzQT3p6w6eutBTJLfyb4oRCUloaOr0y2bTMtOVddyLPkMTb7LrAxVK5uiz1mr17vaqFZnlGRtrpYv2HP/7E+322q2qIBETkYwRwRYWjpGvA16Df+/jfAI8HfNxZT4RgaX6zWnYdpPGnv4fsNtT5A/VNq+y8O8nZ2ejxY70WgJbcqnkAWv7WvBRdW6AeD5Db5YoBQETJAHoycxkzr2XmUcw8mJm/CHQsM89nZmLmAcw8UP2ZxcylzHwOM/dUHwMvJ20w612tlYNtOu10n4SiUHTZtWM0wZ5s3cRmhiaWcXBqvQW4616lXLHNn607ymlJOXUlJSgYVO/m1MqEGg2vLy/UemQ3VxOArLJNAWC7LlvXRwynttY00dGIvk65iS4Rbuu1TipBFb2EpMxMdNO5lWtsvAOe48e9rswmJlUa+hwKfRMQDasMZz05t97qEwoAlJayTtCPvaBff1QVFPrVRZuhKaWZoWUcNxo6FMnZ2T4yxnYtUPVlRnpDWPNy6D+DfsdWVvq132094T5kqP9TK119n/0ffNDHK6O5xcsCiB81vdQ6obKVqsapb8+r/T3Z51jrGyRlZaHD/5T/sedofSJgxapVSGkeGQPACT4lvg4+U5SW5r1nFI0c5V2gpHa0dm3r6azmoOx9/HHUHT6MpKysoN3xoUBE3pANAGSe7LyCwJjIR6nhhyLM8FaW2Eymh6b7Jl6f9N67oORktBin5APYSfoGMrRS27ZFKzVpevsYpaOhlqdk9R61eUjxVhgbxhlxxQBg5joA1j0eY4QTTXaNgn71iV21+511Z+s4qT7jWLsRVW/f7qheVZOCBfw9EI1t3PY+DWR0LuGqbUrCnZn3QOs3v2v8vZb/k4rlitiKMVbmDXUEKAXcPaHe2dPhuWe9ln/dgRK/BBfv+HWGVjOdoaBl2e82ydLX8BEVMZEVTc7ORrt/1gvBFP/tb94vqVEhzg7jubMd5CYAQHdDgtrxJUssNd1Pevstnwmh7qh5XbCG5jbs+PzzXu14K317ACgcXL8StftsGanauhWFA0/xaUbTa9FCND77bGQOUL4vWojNiD60k3PrLX6vp9kkrmnY1frrS2S1Tp9VRUVIatQooEaApibn40ULkK8TabSmYpkDBzoOO+i1J7RS41SL9sRGGun6kRz7eb6lGFI00JdRU6pzo8MY3mh+i//nKFKkqxUCR38xLyPV1+QD9TLgre67D5SejpRWrX0WWFr4MvtCZ/eLluPqEwv15cZWaJ+fmu32Bribn+oFRPQiEZ1JRIO0Hxev74eVJruGsS5U0ykvfUWRb2wWIOM1Q2c0lH//vTcWayW6YcWB55/3fmDMysTsqCxUFO8IhJS2bU2TwtJ71ce9t1x6mV+9vV7hrtvXvnHZDs8raRnHbfoX6Eu9ev4yXxkPEZrfosiYHps/3/Q4o963hpM64zo1AVAfUzXS7KorvRb64enve/uQGxsABaLl7+5F47PPRq/8fGRaVA4Y0eqL9Vg1Xmk0dCgaDR3qDd9sHDLEVqZX7x7toJZomrn4g8GsZGnLRb6GUl7BBu/EoRmVFatWWVSz1Ie2zLwt1Zs3A4Bfear2PUgy5OyYoWX6a50+uabGUY8P77k9HnBtLZgZdWVlXreqGxAR8go2oMv75iW9Zph9t425TZbX031mqrdudeyKjwT6cdvFw83QhLUAINUkgTZStH1MCd3uNJl8zTQntL+DiMBVVTi2YAF23nkXNuTmoWbfPlRtUhZaelGoQGiLgGOqEaKJ/phBRN5mdnZywm4aAKcB6Avg7wCeU3+edfH6fiSpmfpazNFIRl4eGo2oL1TQYvmaS06rZbXCeJOvVq0x/YfWjm6zFDnTwx99jMp1yorZSZJMr6X1yShb1X7nnspKPx1xDX3Jl4a+rXCRrozFeJPJUJXj7EpO9G5rfbyrpVr+ctyixEYr0zN2etNTOs28HLO2VPGapPe0ljIFgNYmegTZo6yVwcxoNX48Or0y2ScZywnGPIO0DvYJhM1/Xa8UZyZNmty0qV9VChEhw8Zg0t+8esy1zvbfcvElKBg02DIz35iNT8nJSFHzEIy92wGgXPWAtDOUpmpobuEdY2/zydHQPFHNrg9cbtZo8GBvQmDV5s2oWLUKGf0DT+L6SbOgX39UrloF1NW5uiqOBFZKfU4wylxHGy30lHVGcOJVbR99FDm33oLuP9jrM4RLo0H1a1WjvoTmltdD+pCywYNT+tpUb98PszwQyzHovFqAIvpjR5tHFFl4u2or1wwANe5v/AluORthNJerXcnfSW+8jq5qtqamJ19bUgKkpNj2ntbQN4DRGmY0cpjpmq77Ah9Qkwb1PaOtSM7ORs4d9ZNmbWkpqgoLkZ5rrWLW4rax3l7bALDj1rF++2jlRj7XapwFpKR4E+7MOKqu8LX8BI2Uli2B1FRUrLFfnbaa4O/qb/+cYjvuf+YZH2NFo0pNpHKS1a/pGQCKbkMkypqcQMnJyNTdWNJsdNcBZTLvoSaCGqWEPVVVqCszF0PRypDMvAb6m5eZu1ifXMbHj2PjsOEon+2b8Z9XsMG0eUtHtQzPTmTKVCcDQPb59e7sMp2uvyYA1Giwsxtn+388BQDYcsmlqDt4EMkOJIKN7/+Rr5X8leTmzRxdM5bo+yIEK9PdWJcbEa7HKFgan3km8go2BF22SsnJaPPww0hzoFkQLppnUC+Ypfdu6QWX9GEb7b6nzQWH3n7bW3ad6cAg1ZO7ZjUan3sOei5cEHDfJrrvkBWuGQBE1IaIphLR1+rzPkQUuKg2SuituEAxNuMkUvrKK0BtbcA6fgDo+uGHfiuHpCAUqzSOzVNusHYVAHoqdVrwm04/A4B1S1CN9hMnIne9clzl+vWo2bfPZ8VntcJN79XT2xvcDM0d3+Ri/6StzD59UJG/zDax0uymoFfU2zh0GLZceZXPOQ6qZTJOSpky+/fzJn6ZNfGJJie9o4wzrWtXtLdYDevRvEq1Bw7g8Cf1IaoqtblRSlt/o1RrLlQ0+hzL0kkrL4tZktGBF17EMbXkKfu88yzHmqGGlkonv+LTcEuf02L1/iRlZnpzGYofrk96rd6pqDTa1U7ryTSssJzkFhjRQlGJ4AFIysysT7INMm+h43//4/092hUAiYjmsTw4bRo8FRU48OIk7LhFyUNIzsmxFFxqdu21aP3QQ+jyzjt++V/Bthqm1FR0evFFpDgMlXT5+GN0nubfQ0LDzRDAGwC+BaD5OTcCmODi9VG5dh025OaBa2pw6EP/5hlW6N+kQGIQfsempKCrQRDFSaMSDb07H0DAmlUNzf2jx66zl4beqCk6eySK1bizHclNmoIrKgLqZZsZEJmqfK63AY9KoPJAwDcfoqqgAAV5feCpqkL1rl2oVfMWnH7Bmpx/vhLDDsE4CwdKSkLumtXoNmumaSWKGZprt1TXHEZT/Ms8eaDf/nqvkZYQZ6TNgw9YXs9YbldVUOC98bXQJScZ0RsPO2691eslqnYoE5x1quodYPYaLlWFhUqPdgcVE4C/ce9Up16fdKmRkgAGAFD/3W88cmRQx1FKCnI3rEebvzyGHvN+jPzAEpx0XavhwlMGoeTFF70htC5qA6Q2D//JbxFBRGhx21gkNWqEXovqNSz0nsdokdmvr4/YkxE3DYCWzPwhAA8AMHMtAOdC5RGkoP8A7Pu70obXiStFT5Gqs5x1xhmOjzEmpyQ1cm4AOE3iMZJh0rTEGEOyQl+bq/VcN3Y81NP8RiWnwSg+BAQuA8sZq0wkuwxZ6nv/+jgAoPUD91se2+mlSX66+4UnD/Qq11m1Wo43KDU1KIGZrp/OQHJOjjdBrfbQIa/qXYZJmCcpMxNt1CSm/U9PxIbcPNQdPeb1mDS9yl+9TE/zG65HXsEGb6mYHr1mhRn60MDepxQPR2WBUsJk995qNFVzWPY9+STY40H1tm2OxZo09K5ZpzHXRkOHItcQmkoKUmkuVqS0aIEec2Z7S8GCgYiQc/PNjhcaDQkiQu9VK01f0zyzObfeiiYXXmB7jryCDcgr2BC0+z8auGkAHCOiFgAYAIhoBIDg0uEjTNbppzt2pRgxc7U6xWmmuEavJYvR9OqrvbkITtFL/nb78gvHWbJEhK6f+TagsCuNyz5XiR3uN6lR11QQm1g0wdFcwFxVhY2n1xtVWqw3Z8wY27FmDhiAvIIN6Dj5Ze82Les72yBdfKKQlJ6O9B49ULNjBwry+mDTqfUWvlX+Qs6vfFvNbhwyxNsoyamCWtaI4d5KBAC2KwuNlFatvMI2WnMSzVMUSKUOANqo0syH3puOgj7K9yaYbnNAva5A43POcexlARTDTMvRaP/MRK/0dSKQ2r590O5lITBJ6elo+1eltLXV73+PnNtuC3oRGU+4k+2k8Aco8r3diegXAK0AOFOBiRAZ/fqiy7Rp2HH7HYDHg06vver42N4rlqPwlPqELSfu9EiR3KSJN5kpGLKGDUNy06aoKysLetWUoXN3BUKbdDxlZdiQm4fu33/nbdihxf+1LmtmdJv5lZKkVVqKDbl5XnGdtG7dHIuRZI8cic5vvO7TRS7YrPxEwmwi673SvvlO7prVPqJHWqtffa/6QOSM+TVyxvwanqqqoIRiUtq2Re3evUqP9MoKJDVq5CjZ0uw9dJII63OOpk3R/dtvHNfE6+kSoLe90PBoftNNaH7TTbEeRkRwswpgOYCzoZQD3gWgLzO7m2oKZfXQO38pei9fFpTb1XjDTWlh3YbUjLyCDWg1YQK6fPB+UMeFS8+FC3wyuYMhd91atHvyCT9pUjOSc+pV0jafdz52/e7/vO1JMwcNss3uTe/e3ac0slBVMPRUBiftmTViBDq9okjl2pUOngh0nPyyV1USUJUSA7htKTXV9L1sfuMNJnvbk5SeHtT3R0t2LJ38Co7M+tqrE+CEvIINPqEeq7atdqSddJIrynaCkEhQKLK2IV2IKAPAPQDOgBIG+BnAZGYOrlYlDIYMGcL5Ntnqgdg44lSvTvZJ09/z9n8XFA5Nn+6niAUAnd94HVk6PQUryj7/3Nv+FFCEXKy6tgmh46muRqGq39D+mYk+DXiiiV5gKr1XLx9ZZ0EQogcRLWNmvwQYN3MA3oIiBPQCgBcB9AEQuF9hHKGPqWeefHIMRxKfNL/pJr+M8SYXX+Ro8geUhK+8AqUjGKWmyuQfJZLS0ryJSG5N/oCSy6KR2rmTzZ6CILiBmx6AVcx8cqBt0SRcDwBQv4px4hYXBMGXrdddj8o1a5C7YX1EWusKghAYKw+Am0mAK4hoBDMvUgc0HIB5Z4U4RiZ+QQidLu++A091tUz+ghAHuGkADAdwCxFpheGdAWwgojUAmJmDq+0RBCHhoLQ0JEsyniDEBW4aAMG1WBMEQRAEIWq4ZgAw83Yiag6gk/66anmgIAiCIAgu4poBQERPABgLYDNUNUD1MaYdAQVBEAShIeJmCOB6AN2ZudrFawqCIAiCYIKbOgBrATRz8XqCIAiCIFjgpgfgn1BKAdcCqNI2MrN7SiSCIAiCIABw1wB4E8BEAGugtgQWBEEQBCE2uGkAlDDz/1y8niAIgiAIFrhpACwjon9CaQmsDwFIGaAgCIIguIybBoDWOk/fGUbKAAVBEAQhBrgpBDQqGuclogsB/BdAMoDXmPnpaFxHEARBEE4kXCsDJKI2RDSViL5Wn/chojvCPGcygEkALoLSXvgmIuoT/mgFQRAE4cTGTR2ANwB8C6C9+nwjgAlhnnMYgCJm3qIKDL0P4IowzykIgiAIJzxRDwEQUQoz1wJoycwfEtHDAMDMtURUF+bpOwDYqXu+C0rXQf317wRwp/q0StUhCIWmAMrk2Kgem2jjlWPdOTbRxivHxvc1G+KxvU23MnNUfwAsVx9/BNBC93wEgHlhnvs6KHF/7fkYAC/Y7J8fxrWmyLHRPTbRxivHyudCjpX3NkGONZ373EgCJPXxD1BKALsT0S8AWgG4Nsxz74LSXVCjI4A9YZ7Tii/l2Kgfm2jjlWPdOTbRxivHxvc1G+KxppBqHUQNItoF4N/q0yQA6VCMgioAdcz8b6tjHZw7BUouwTkAdgNYCuBmZl5nsX8+Mw8J9XqCIAiCkGhYzX1ueACSATRGvSdAo1G4J2Ylj+BeKMmFyQCmWU3+KlPCvaYgCIIgJBimc58bHoDlzDwoqhcRBEEQBCEo3CgDNK78BUEQBEGIMW54AHKY+WBULyIIgiAIQlBE3QAQBEEQBCH+cFMJUBAEQRCEOCEhDAAimkZE+/UqfkT0OBHtJqKV6s/FsRyjIAiCICQSCWEAQOkjcKHJ9ueZeaD6M8vlMQmCIAhCwpIQBgAz/wRAEgkFQRAEIUK4IQQUTe4lolsA5AP4IzMfMu6gbwaUlZU1ODc31+UhCoIgCELsWLZsWQkztzJuT5gqACLqAuArZu6nPm8DoAQAA3gCQDtmvt3uHEOGDOH8/PxoD1UQBEEQ4gYiWmYmBZwQIQAzmHkfM9cxswfAqwCGxXpMgiAIgpAoJKwBQETtdE+vArDWal9BEARBEHxJiBwAIpoOYCSAlmp3wb8CGElEA6GEALYBuCtW4xMEQRCERCMhDABmvslk81TXByIIgiAIJwgJGwIQBEEQBCF0XPEAENH/HOx2hJkfjfpgBEEQBEFwLQRwBYC/BNjnTwDEABAEQRAEF3DLAHiemd+024GImrs0FkEQBEFo8LiSA8DM/4nEPoIgCIIgRAZXkwCJ6BkiakJEqUQ0m4hKiOjXbo5BEARBEAT3qwDOZ+YjAC4FsAtALwAPuDwGQRAEQTghWTVnJw7sKHe0r9sGQKr6eDGA6cwsHf4EQRCEuOTgnmOora6L9TBs8dR5ULKrfsKf/+EmfPiPpY6OddsA+JKICgAMATCbiFoBqHR5DIJwwlN+sNLxKkAQBH+qK2sx/e+L8cPr62M9FFve+csifPDkUhwsPhb0sW7pALRj5mJm/hMRTYRS819HRMehlAgKgi0/vLEehYv2AgBufnw4mrfNivGI4pu3HlkAABg/eXSMRyIIicnhfccBAJtXHIjxSOwpL1XW0NP/vlgRxg8CtzwA04hoERE9DeBkAAQAzHyMmfe6NAYhCtRU1aGuzhP162iTPwC89/jiqF9PEISGzc4N9RHq40eqYzgShwQ5+QPulQFeBKWZz49QOvctIqIZRHQnEXV2YwxCdJhy3zx8/vyKWA9D0MEcwp1AEAQvzIxFn23xPj9SUhHD0UQP15oBMXMlgG/UHxBRVwAXAXiRiNoy8zC3xiJEluKisqD2r6v1YOf6g2ick4GWHRtHaVQNl9VzdsV6CIKQ0FSU1/g8T0SbuuJoNTIbp9nuE5NmQETUBEAZgPcBjAVwRizGIcSGXz7ahJkvrcYHTy5xtH91RW2UR3RiUbw5OINMEARfjF60DQv2xGgkofPFf1cG3MdtIaC7iGgfgNUAlqk/+cxsG2AhomlEtJ+I1uq25RDR90S0SX0UKeEEYc283d7f2RPYtP4+zrNw4w7dzSshYpeCEGes+G6Hz/M9Gw/HZByTxs3B0plbQzq2ZOfRgPu47QG4H0BfZu7CzF3Vn24OjnsDwIWGbX8CMJuZewKYrT4XEoyX7pkbcJ+yAydm/C1a6LOWS3cFvgkIglvs3VKGdT/vDrxjhGEPY9Hnm3GsrMrR/qtm7/R5Hot7kOaFWPKltQEQbr6P2wbAZgDHgz2ImX8CYBQNugKA1mDoTQBXhjUyIWYs+XJL4J0MnKhJOZFm4xIpshHih0+eWYYf3y10/brFW8qw7OvtmP1G4ngTK4/VBNxn7bzwjCm3DYCHASwgoleI6H/aT4jnasPMxQCgPrY220mtNMgnovwDB+K7nrMhsG/rEb9tS2duC/o8bz+6MAKjOfEpWOTcADi45xhmv7Eec9/eEMURCQ2NQ3uP4dDe4EVqIoq6Uq6pim9VPz3T7p8fcJ9dhYfCuoZrVQAqrwCYA2ANgOgXjwNg5ikApgDAkCFDEjCXM35x6n4qLjqMlLRktOqcjY8n5pvu4/EwkpIoksMTHHJgRzlqazyY8a9l3m2jxuTFcETCiYSm2xFLUapN+fsBAHu3+C9AnFK0bD96DDZdZ8aMcO+YIRkARHS13evMPMPipVpm/kMo1zRhn6YwSETtAOyP0HkFhziZ/4+UVmDGs8sB2N8AaqvrkJbh+3GsrqzFob3HcSgEicuGSF2NJ6SYoFPdcEEIh1iuvsN1lQNA/qxtcWMAFG8uQ+nuoygLMxQaqgfgMvWxNYDToKzqAWAUFLEfKwNgLhHdCeBLAN5sjBCbAn0B4FYAT6uPn4dwDiEMnGTwv/3n0F31r074yfb1PZsOoX1PKf7QePuxhTh22FmSkyC4zZT75sV6CGFRutu9hNrCxfahO723LhxCygFg5tuY+TYo4oN9mPkaZr4GQN8Ah94MNQ8AujLAQNcjoukAFgLoTUS7iOgOKBP/eUS0CcB56nPBRSL5hdi83Dc/w4m8cCi5AycyMvkL8caJ9plcNWdn4J0igF0DIk8EpdfDTQLsoiXiqewD0MtqZ13pX9dgygCZ+SZmbsfMqczckZmnMnMpM5/DzD3VxxOqtfDBPccwadwcV63OYJk3fWNQ+5cftG78OOct38Szsn2BXVu7CsJLgElkvn99Hea+W+Bo39oaa9frzoIT6msT91SUV2PKhHnYty30WHQisXK2OxOmW8z/cFOshxDRksRwDYAfiehbIhpLRLcCmAnAr7CbiAYFOpGTfRoSS75SSuPef8KZWl4s2B/gJrbbkKGqdaizQl+j60aDoURm4+J9WP+zM3Uyu1DK91PXmW7/7N/LQxqXYM+ugkOoqazDyu93BN45wZk0bk6D+Dvdgj2MmurI5lGEVQXAzPeqCYFnqpumMPOnJru+TkQjYZ+0OBXAKeGM50SitjrxJ8Cq48FJ+L715wW4+8VRAABPrRRsRApPnfX/kiwqL3bHSPnsRIfVlm1Fy/bj3Ns9SE6OiRp7zDlSUoEmLTNjPQxTqo4Hrr93m4qj1Y7KAoMl7DJANePfKulPoymUeL+dASBF+jq2ry2N9RCCprqyFsePVKNZ60YAgIPFwYUv9JP+0UPW4QIheCrKq5GZ7d8YREov3UX/Gd+4eC/yTmsfw9HEjrcfXRjTskA7jI2A4oFoTP5AmCEAIrpa1eIvI6IjRFRORH5+YVX6t5tFDoD2I90AEwhjbgIz4/PnV+DdvywCABw9VIXFX4SmYQ0AtTWJ7wGJFp8+F7x7ftoD5jcQKw8AoOShCJFl9pv1uS52nhkhdth9J040wvU/PQPgcmZuysxNmDmbmZtEYmBC/HCkpALb1pT4bDM2qGAPY//2cgDA1lUHsH2t7/7BUicGgClbVhzAnk2HI3a+8lJrT4td0qbgLsWby7Bzw0FMGjcn9qp6JyCVx2qwaek+AEBNVWy7j+7c4F5ibrgGwD5mFt3QE5y3H12ImZNWA1AEe+pqPThg6DS16LN6Pf9ZL68JW+973/aGkSVtx76tRzBp3Bzs3VLf3vfrV9b47MPMqK6Mzg0rWufVWPvTbhzeH3RrkAbJjH8t87Z31ZT1hMjg8TA+/88KfDd1HfZuLUPp7tgaWE7a+Drl6CH7MsxwcwDyiegDAJ/BV9gnUE6AkIB8+txy7Nl0GM3aNMIRQynKighn+zrNcD+R0bwo29eVom23pqb7rJ67C/M/3IQxT50a8et/99o69BzSJuLnBZSb7rz3CpHROBV3PHtm4AOEhKKqIraraA1mxkt3+xambV9XipP6tvA+n/dugbd17icTlyEzO9XVMUaTBTOKMPJXvS1fD9cD0ARKd7/zoagDXgbgUuNORDTI7ifMMQguobmeD++L3qrtWFlVVM+fSGgRYiIlJllRXu23z+bligK2nSs/HjlepvwtlUeDT7jaVXgI30xZG3Yr1ESgrsaDSePmBN4xznjt9/Yqnm5RU+lfNvfVC6t8nq//pdjneaAkQKcthd3mpr8M99u2aek+21LycMsAb3O463PqYwaAIQBWQakIGABgMYAzwhlHpKiurMU7jy3Eebf3Rae8nFgPJy4I5EKKNG889Iur14tr1Plt6VdbMWBURz/3PwCwmioRrcSl6spavx4NkeDNh0N/nz9/fgUAoPJYL2Q29q9sOJE4sLPcdPvRQ1Vo3Dzd5dEkHh4HcuXBsnruLpx6ZfeInzdcctpnIT0rBVXHfL0vdouDkDwARPSg+viCvq2vVXtfZh7FzKMAbAcwiJmHMPNgKHX/RaGMIRocLD6GivIaLPpsc0zHEU/qf58+FxnNaSF49L0WvpmyBsVFZf77qKvgUMr5nPQbP1Qcmjdm0rg5+O61tSEd65QV3534IjOa98dIrBPV7HDSI8QNqitrMfWPP9vuE4qB4OR7Eytu+stwnH2ztcvfSKghgHQiGgplJZ+Pel1/7ceKXGb2LmOYeS2AgSGOIeKQKlOwf3u5T+KVU6ora72JU0cPVWHxl1tCclNuXRVeBn0kOVKSWK7lE4nt6+q1IHYXHjbdp65WcQFYTRR6Ko76hhAC3RwBgMIIEmotWANRfrASCz8tQlVFLY6VVWHxF9bfG70SWkMwAAoXFZtuj2QlSKR56R4/MdiY8MvHgdeWL4cw1qoQwlZOCdd4ymqajn5ndXC8f6hf76YA/gvgXwBuB9AbQAmAL5n5TZvjNhDRa0Q0kojOJqJXAcRlFcEnzwS/8n11wk+Y+gflpvrBU0uQP3NbSP2nF3+xxXT7nk2H8NWkVQ0i9mlF91NaxXoIrnH8iH/M34iWvOTkM+GpYxwrq/IxLALhxkftrUcWYPm3O7BgRhE+f34F8mdtwx4LJcLX/uAfW/bUeeLKaxYsNVV1lnkvayza2P74biGKlu23DBEkAprxGi3sVupOJXV/9bcRfts2r6jXrCs/WBlRj0DBIvsugE5p1MRZaCzUboD3M/NpANoAeATAQSiGwFoism5jBNwGYB2A+wBMALBe3RYfRCCMqrmUtOSmbavDW82nZiR7f//0uRXYvqYUa+ftxvZ1pfh4Yn5UYlzb15XCU+fB2p/C76EdaVqdlO3z/EQ2hoJZDTg1WN946Bd89cIqx4mWHz8dsFlnxFj/8x4c2quMy8oLZiYRvfiLrXj/iSU4WByf9fGVx2pQXHQYe7f6ehU1IaCZk1bh3b8u8jsu0Pv/7atr8eFTS7Hu5/j7njrh21ejGyKyu51vWrrP0b2zWZtGtq+/9ciCgD1OgiFUjYebH/dNAHSyeADCLwPMhFIJ0FT92QPAP1NJhZkriWgygFnMHF6huAoRbQNQDqAOQC0zDwn9XKGPw+rDFK51mNMuy2/b/h3lWPzFFlQdr0X18VpkNI5c2crOgoP46oVVGHJxF+TP2hax80aCvmd1QKe8HB/NAebw3rd4JtKSpPoES7OKgkhhliVduHgvfnh9Pa57eAhan+RAK8zhezpp3Bxv/sPxI9Wm35dYM3PSKuzdcgRDLunis10zWKz6LjhVw1z29Xb0PdO52zdeiGWo01PHIVWgAEBSivJ527xCCXHVVNXh+JFq76qbPewNg1x8zwB0HdDS+bhC7IHSvG1on/tQkwCnENEvAD4AcCqABQCuU5P7LFf0RHQ5gJUAvlGfDySiL0IZg4FRzDwwnMkf8O9dHcwKTK9c98af6m+0+8MUtNm39YifIEvBguL6RjsRnvy0RLN4m/wBYMQV3dD6pCb41d/r3XLxknAUjzRpmWH9YhSsJk2USN9hULsRav3NP/qnM48CEfDLJ0WYNG5OwJVaNLxgkeTADiU8sczwndpVcMjHg/XVi6t8FgxOP9u1NXXIn7UN894rjPv/hZEtKyLbAsbjYdRUBXbvh3Pf8NQy3n9iCb55pd6D8fqD9VLbeolnu/vo/I83eUs8WR23MU8nVKIaAgDQGUA6gL0AdgPYBeCwg+P+CmCYti8zrwTQJcQxRJRjh6sw62VL50VgdPdTvSER6INWUV4dUDTj1Qk/oXhz8EmJobD0q9D1+4Oly4CWGD95NHLaO7Nek1OUj6vWbAiITwOg4mh1XHQUO/OGXpavBTP/O51U1s/fg1cn/OSzomUP+8V6nbxnB3aWe1vJaiqUwcDMKDsQX3oSxmjV4X3HfbZtX1vqk5jpNLxVUV6DxV9swdqfdkd8Qo02c96OXApY5dEafDtlLabcN0/ZYPMZD0blcvBFJ/lts8s50b9vemOk7ECFz2urftjpHcsPb6zHlPvmYeOSfY7HZce5Y/s42i/UHIALAQwF8Ky66Y8AlhLRd0T0N5tDa5k50jMZA/iOiJYR0Z3GF4noTiLKJ6L8Awesvxz6VbtGMDKlVje1QN/haQ/Mx2u//wl7Nh2y3c+qKiFRG1e06NAYF9/dHwBw7UOBHTeX3DMAqenJftvjbcVTdbwG0+6fj9f+EDjDPtqc1K+F5WvBGHpOM863rTFPLvzpg40+z0v3BE7Y01c97AgiaVGjcNFevPPYIuwqtP9euYLNV/SQSd7C/I82ofJYjVfjIRhiXcIcLMG2DLdj6v0/Y8tKZwbQlhUHHK+2R1zhrOZfm9z19yTt/T2wsxzvPLYQq2bv9DvuvccXhzXx3/RXfwEgp9U7IRf5sMJaALMAfA3gFwDdoST4WbGWiG4GkExEPYnoBSjhg3A4nZkHAbgIwHgiOsswzilqaGJIq1bBZZAXLXNWxlRX58GrE8yVr5yKqARa5Sz7epvp9kSY/ruYxMDa92jqLV0zm9g1rr5/EG7952mm5wDcyVIPBqelb4EIN0Y/8NxOtqWBO9Y7bzhiNkmZYaVFYJR11hL9osWWlQewWzVanI49mth5W0p2+RtDq2bvxNQ//owv/rcy6GuVGSS63SaQcJjddz2S7Ck6DLu74/7t5Xj/79YKeQCQohurE7lqbRFoDEFsW1OCA2qjNK008c1H6hecxtBzsJjlvSSlOJvaQ80B+D8iep+IdgL4CYr8byGAqwHYSej9DkBfKH0D3gNQBqUaIGSYeY/6uB/Ap1BCDEHxpcUXbcmXyipp9pvrTT0EAHBgRzkmj//R8txO9QSqTSQr9UTSUjaye+MhTBo3J2o3j4vH9ffblurQMKIkQuPm1rHsRZ/G14rH2EGPmUOqVPhMVbsLlZQQb7RmZU9HDznTgnDqjfrutXWBdzIw7cH5jiRx924pw9eT16BggXn9fEywsAAym6QhKdn6f3ZgR+KV+K3/xb+Hx5gnT0XTVpkAYFqjHo1Knk+fXe7XwTRYeg2t74OR0TjV+zdYMW/6RkwaNwfrDAbvzEmrMfedAu/z76auw9GD0VVYbd7WvnpBI1QPQBcAHwMYxszdmHkMM7/EzKuYrR1XzHycmf8MYCQzD2XmR5k5ZKUZIsoiomztdyg9CYKuLQm0GipYuBfHDlf5taitqqjFh/9YGuzlAtLn9HaO943EpK3Vnu7eGB13KSURGjX1TUrpPaKto2PTG9kbCvFWqrj8m+0+z1+6e65fMxInHNwT3so10M3KSOMcRVbWrOzJabZ0UridRWyocFjWZPScBKN54DYVR6odidXEM5XHanxyPMyqnpq0zMSvnzgV4yePNl2Uz3kzOlIw4bYUN2qOBFqpr5+vTPzGe4ARre1wNHEqkR1qDsAfmPljZg7KzCai01SdgA3q85OJ6KVQxqDSBsB8IloFYAmAmcz8TRjns8UoHhGthhceDzvW+dYMkLIDFSG3b9UWbvu2Rq8F720Tz8AVEwbi7pdGKYl/Dsu1Qi1viQQ1VXXePJAjJRU+yZrb15Zi2TfbbI/X1+K63cO993BnBpbG9Y8MxfWPDDV9LZB3SoPU1WysNOoP7jmGSoMO+naLvIRoUbh4r59RaucXCdf9a0f5wUrMfnN9VAV3pv7xZ3wzpX7NtWbuLtv9W3Zs7LctUuI3kaaJwYi+4venODouUv/v5oZ7ZLseJh1BHTjdeg237ugZRZvdlOcBXACgFACYeRWAs2yPsIGZtzDzyepPX2Z+KkLj9KLPJNYLjTi9oWsrKzOsxBrYE3xy3zuPLcRn/w7NbbxedZdqFmy06JibYxknPnl0p5DPG4xs89qfdjvWqP/qxVV49y+KQMvbjy7Eh08t8Xlt0Wdb8Mp987DBwt2sd2263cPdiTSwnszGaWjVWRFZuuUfp/l4XlLS7G8Tx49UY9PSfShXZaPdbiCl8fMHGzHnrdgKi/7w+nrMe88gcRKjRJ150wtRsHAvXn9wPma9HHwlhVOCETvrNSw4wzSStOzkb3zYYfwOBfJGRpqbDcl9Z99Ur/E/5qlTMXbi6bjjX4FzExplW3sD3DYAwMzGNEhny4sosPiLLXj7sYW2+1QerV9R6K11pzd0u1jPB0/6JqFoSSQeD4eU3R9yzDCMENypVykZsn3ObI+zbvQvO+sxpLWj85x2bQ+/bW26OhCMQXCyzfPeK3ScqKdlv2ueEbO+CLVVdZaTjtEdHYuKhTueC3yDMJKdk4Gr7x/sfR7Ilfr+E4vx3dR1rpWqBkus5XJjlairdYGrOl6LratKUFtTh5fvmYuNS+Nvxf3lCysBKMJO+lyPfVuPoGBRMYqLDod9jZTU4PJi4kFgbOilXQEAPYe2QYsO9QZMkxaZyGqa7kgEzi4c6LYBsJOITgPARJRGRPcjhr0A8mdtw5EAMfS579YnbwS7qgqE0QOg9QDYvHx/wHHpcSJ8ES20mvzsnAz0H9nRu731SdkYP3k0LvhNP0fn0XsG8k5vh5sfH+6oPNAJmkBNrUP9byN6MadgerN/8KRvfsgP04JPfguFPF0OSUZWKgZd0Nn+AJOPdUp6/a2haLl9aVWkFQsjTf7MbT7P1/28G5PGzcHsNxRxom2rS9Ss8eDQN/+yoqK82i+E0nOotUs2EkwaNwclu4765ZEc3HMMHg9j0afmvUaiQZ7DfKYd6w76/C/X/rQbzIyPJ+Zj9hsbMOPZ5WGPpVnr4PJiYikzfunvTgYApKlS8JnZykR/8d39fYTQ7Lj8voEAgK4nW1e/uevTAMZBaSLUAYqA0LcAxrs8Bqz4bgeqHbbTLNWV6UTCBeTxMIqLDmOp4aYEAMu+2Y6+Z3XwUZJywsIwa3+7ndIqoIBI225NTBsbdR3YEheN6+9Xptehd/Ogx9GyU2OU7DyK/md3DBj7T01P9jF8rPrW19V48MFTS8IqPfvp/Y2Bd3LApvz96NSnGEcPVWLoJV0t9wunBHDIxV0w+EJf4ZJMGxcgoORnGGnSov5mGY9iS8Ggrw1f8tVWrwZCwaK9OGdsH8x8SXGPj5882vE5D+095uMFvO2ZM0zV1354w39907Zb06gngu020T/QVBiNlSrR4pZ/nIbsHBs1SgN6Q3Lee4Uoyvf9H9VW1yElLbTqlkvGD0CH3s1RuGSf48+zMZ3dqTRzJNBEz7QqEW0sdpO5kU55OQE/0656AJi5hJl/xcxtmLkVM/+amV3N0qmr8WDBjCK/VYETMrLC19xf9NlmfPbvFaZfUMDX4HCKXeLNvm1HArpwkx3UjI64ortfDe8Fv+0HIkK3ga38YvuO9N4NnDu2D7oPao2cDoET/zr0aubz3EqH4a1HF5hO/hXl1T55HPu2Hol6dzIAmPPWBiz5cit+eH09dm4wrz6Z9sB80+2BOP83fTH88m5+N8lAnisnsqGhiPHEG9WVtX4CSIHCZgd2lpt62IzH/fyhr5G46PPNKNlVbpoVXx1A+TMSUBI5Vti0o/JYDSaNm4PP/r0cs15eDU+d8++I1eSfd5q5V8A4MRt7JFiJOpXuORqw50qX/i2RmpaMVhZ5AF0GtESuoTLJuBCLxP/TKdpc4+TeHA6uGgBE1I2IviSiA0S0n4g+J6Jubo5hdYAsVTu0kjurG7cV+thvoB7mdUF8wcyY8ewyr9rUgR3l+PjpfHw00V5/3clqpEPv5t4mGBo9BvvH969/ZCj6n93B9LVAtOjQGBfe2Q/JyYE/lmbJRLsKfN+XfVuP4HiZ+Wp62gPz8d7ji72tWD+emO84gWzz8vDFfgoX78UX/13ptz2QLPTAczsh91TzRCqrjPJQxVfadqs34hbM2Ix3/7rI7yYdq7h//7ODb35jliyqL+N97Y8/+Wge1FTV4cOnlmLKffP83MHfT/NterrZECZZ9vV2fPDkUuzf5u81y8iKvuM1KQnItIkPTxo3B1XHlRK+tx9dgK26RL5dBQe94UlNmnj3xsPYuqoEL4//EUu+DC+EcNo1PUz1AAJ5JmZOWu2nIlm0bD/e//sSHwllI3rvZI8h/uGXjrnNcck9AzBqTC4u/7+B3u2a213DyX0pUmgr/9wR7TBgdEcMv9zaYxjWdaJyVmveA/AhgHYA2gP4CMB0ty7uqWMsmBF63e23r67FpHFzTG/cdlRX1DoWhNFbnaG86cVFZZj/0SYA9XX9pbuOWrq9nMS0r3tYicU7+QK06pyNs3TZqtEizSQcc6TU9wbiJDQy5b553v+TJsd59FAlChdbJ0rpy54iCXs4YGlpZnYazryhlzf5Uo9VLojRYLjwLmd5Gadf29P7e+nuozi87zhWzfHN4Z3xL+cJmJEid0RbtOvRLOjjAnVaqzpWiy9fWOV9rtd717euNTO0ggmTJFl8j8Y8earp9pz2WTjjOuW9ME5KVlASBUw6nf9xEbasPIAjJZWY9dJq7N1ahi0rDuDz/6zE6w/OtzSItfCl2UKorzqxj3nK/G8BlNXt2Tf73yOc3Fe1MME3r6zBpHFzHLUU1n/+W5is4rXbclJyEjr1qdexMwudXabG5qONZgAkpybhzOt7Ib1R5Dq++lwnKme1hpj5bWauVX/eQVg56MFRFoS2fyTx1LFjQRh9qaE+6zNYaqrqfFaqL90zF9vWlKC6starZ+CkZ/TA8zp73fl6d1SuhRvPLTrrvqgaelf3gZ3llmEWIz++61u29ebDC7zd66LNtjUlWP7tdtTVeLyd8+zIbpGBtIwUDLrAv0FJjUW9flJyErqerKyCegxpje6nOPPO6JsuaYQjXDPsMl+DtoWDUA+geJpufKxe4POcsX0cV5do1NbU4XsHSZj6xDn9qli/wg9XXMjoSQOADr2boUlL8yS1EVd2x4DRHXHubX0w+pY8R9egJApolBQsKPZRZfxk4jJ8/Up9QzSr8lZACaXOeqm+tFBTAExvlIKkJPLJIYk0FUersTmIpkdd+td7ANobQoeAebMfKzr39e+v0b6n/zmdYBeftyqXjjRuJwHOJaI/AXgfysR/A4CZRJQDAMwcnG89SGqq3Uvi0KNvFRkIfW6Clf69E1b+sMMvaU/fb6BznxxbBcTM7FRUlNf4CHd06d8Ca+YpIiet1ZrxWGEW19bLqoY6gYea+bu78BDW/hy8KqH2nix0IGl85g09bUMr6Tau5YvvHoA9RYe9tf5OSM0wDx2s/GEHBp4boLIAwNk39/apiW/R3tegHXxRF0eywBf81t9jEWxFznuPL3YsaDRp3Bxc8Nt+OGrikmZmzH27wOQoa0lxI2YiWDVVvvemdj2aeltzEyl/rybudPl9A7F9XSkyGqV6K4eMFC7aa5q0Gyk+ejrfJylu7tsFyt/FoZUwO6VgQbGtd84U3XBSUpNxw6NDfSp0OuX6LibSMlMc5Wn85vmzMHPSKoy4oltQVQqtOmejpxqK6DGkNYpMypLTMt2Zmt02AG5QH+8ybL8dikHgaj5ANDjrxl4RyxonInQ9uSW2rgpe01rrY2BFIPnj4Zd3w4/vFvoYAGfc0AttezRFckoSug0MrrGSG+it5lCldEMtaQtXu9+KnkPbeHM0Ovdp4TPxjX36dJ8eFQMCiCm1D9JtbqVT/8vHRRh4bueAxpKxG2E3g7SqEzXIq+4f5PPcqQvcSHlpcJnvVq5lO+lvpw2WzBJkLx0/wOf5Zb8b6G1ra1xhdsrLQac8ZdKyMgCcdnAMFbN2uMu/3Y7UjOSo1s8HPfnD31hs2dHeCB7z5KmodbBYTMtIxtX3Dw5KcviC3/bzMeLNvGxAZBLOneCqAcDM0clkiDBnXNfTG0cPFqN8Y7iMGpOLlh13eeNuXfq3sGy7Gkn6nNEe3U5p5aMpnZRE6DU0dkpegSguOoyykgqkpIYe2YqlpoIZHXObew2ApoY65qxm6Rg/eTQ8dR5UV9YhNcQSKSsCrbIDlY4GcmM6yarWGy2//c9ZrrlGzdi6ugQlO4Ov0tHTQjOoCT7BTy3efPmEgaiuqPVJ3Ix2JnikCGWh4gbBfmIyslIBB7dx7fuR7PB+c82Dg9G2m6+cr1Oxs2jhdhXAdbrmPY8S0Qwiciaw7CJ9z2wfUgJeeqMUr7WuJe2ES2bjNAy7rBuuvn8QrnlwME45P7DrNRIQkeOGEvHCmnm7sfjzLWHFqTfFmUqaviGJ1YSclJzk2opB4/iR6rCTIYkIV/7B+dc/LSPFp8Rx1JjcsK4fLPqYd6hcMWEgAOAq3d/doXcz7++dcnP8cjSi6VJvCET6/2eWgGvFPS+PwtinT8e5t/Xxm/wBmIbkggnThYvbpuVjzFxORGdA6QnwJoDJLo8hIJRMGHxRl6CPu+O5M5GURBg/eTROPqcTsppGbgJt16MZ2nZrirRMd2/0DY3FX9iHTtwmWtm/4eIkr8VJPkWHXs0dJwMa6XN6e9Pt+kStWDUmskIzqlt2qr/JW+nja4uJeJCkPdEYO/F0ANZ5LnYMuuAkR6JRWu5GVrN0y+ZcWU39P5+nXe3cwAgXtw0Azb96CYCXmflzAHG3zExKopBkf43H5J4a+Uz5nHbO+jwL8cVl/+dO+ZBT9LLNdrQ+KfTVSF2AsjuNGx8b7tOGOFDzoUDoy75+/YR1OVos0atWGpMjNS4ZPwA3PjYs4hLkJxpX6rr0OVVrbZSdht7D2/rU/UeaIRd3Cem4jrn+FU7Rwm0DYDcRvQLgegCziCg9BmOw5MK7+mH0LbmhTf4mbqbug4IXwwmEVQ2xEN+4+aV2guZm7DXMXpfeSbMRALj7pVF+24KZyK//81CvS79D7+Y468ZeuOqPoUUHtbyB9EYpCRE/t/o/pWWkhFUKHO+Ea+hp6Ev7epoI/ZhBSWTplg8FM3Guxs2dyyBruN1x0O1vx/VQ9P8vZObDAHIAPBDOCYnoQiIqJKIitcQwJK59aAi6n9IaeafVuxXNRB+sGjGYiXiEqsAWDvp6aSF+iGXymhlWGf5G+pxh7mY3YnY2s2v0H2XueUhNS/Y2a8lqlo7+Izuifc/g+0kAujr7EP/lgYyiSOM0icyMW/5xmvd3Y5JovHP9I0PRvK0zj+Yp51nnPukXbKcYGl8ZK1GihZnscbsewRsXRq2MaON2L4DjzDyDmTepz4uZ+btQz0dEyQAmAbgIQB8ANxFRn1DOZZaN2blvCz9Fq/TMFK+Vdsez9a1WzT4AjXOiE39s3cU8c/Sicf0jsmLQ4mPxzs2PDw+8kw1G7e9AjJ882lFypya6Y6SJTVtOO7oNbBXxSaljrjK5BgoFdD+ltWmbZz9MJlu9m1uLmZ51Qy9ceFc/3P6sfwOidj2a4dzb+gSVQDt+8mh0H1SfKNmkZYY3UVBfwhoM0UouzGrmez/Q5IytSsGckJ2TgfN/0xcpaUmWxn+fM50ZccHSrnt4q+fmbbPQ90x/SWBjuSgA9NNJP9ut2o2fuUvvdSf0NvjiLjjn1jyc1K8Fck9rh/GTRwdsaKahhb8u+G0/DBhlX8obaeLfP2bPMABFzLyFmauhCAxdEcwJfvW3Efj1E9btFbObZ6BjruKSPOvGXsjMTsMFv+mHDr2bI61Rimn3NQ19/+nxk0dblj1lmjRjuXvSSMsxaZnEevqc0T4itfl3PHemaWJKPKJ9wVpaNPgwQ5/Be/aveuPcsXmOVOWuf2QogPr2pnbeHWPu29inFYNqzBOnBtVx7uK7+wNQDLvzbu/r+DgnZDVVSgiduED7j+yI839jf30iJflVa3V79QODkZyShPGTR/v9zd1PaW1aYaKJ3QRbznjOrX3QR31f2nVvhtS0ZFzz4GBcNE6prdfeu465zZESwCt3z0ujgu4br0dbHJx7m+86RMsG13PWTb2D+jxY0XNIG9z1v5GW4z7bxoAL5HLWL3KUSa3eWBl2efiyLb2GtfHzjp1/e1+kN0rxMXr11R9DL+1ieb70Rim45sHB+O3zZ4U9tmBITk5C7qntcOm9J+Mch2qNGtc8MBjX/mlISP1TwoVi2fM4XIjoWijhhN+oz8cAGM7M9+r2uRPAnerTfgBCrV1qCiDUzidybPxeU46N/2MTbbxybHxfsyEe25uZ/TN6tSY1ifgD4DoAr+mejwHwgs3++WFca4ocG91jE228cqx8LuRYeW8T5FjTuS/RQwC7AOiDJh0B7InStb6UY6N+bKKNV45159hEG68cG9/XbIjHmpLoIYAUABsBnANgN4ClAG5mZtMOI0SUz8xDXByiIAiCIMQUq7nP7WZAEYWZa4noXiilhckApllN/ipT3BmZIAiCIMQNpnNfQnsABEEQBEEIjUTPARASGDMRJyIaSESLiGglEeUTkSgbxQAimkZE+4lorW7b40S0W31vVhLRxbEcY0OGiDoR0Vwi2kBE64joPnX7v4iogIhWE9GnRNQsxkNtkNi8PycT0UIiWkNEXxJRTNsBigdAiAmqiNNGAOdBSeZcCuAmAP8B8Dwzf61OMA8y88hYjbOhQkRnATgK4C1m7qduexzAUWZ+NpZjEwAiagegHTMvVzusLgNwJZRE6DlqeHQiADDzQ7EbacPE5v15E8D9zDyPiG4H0JWZH4vVOMUDIMQKKxEnBqBZxU0RvaoOwQZm/gnAwViPQzCHFRXV5erv5QA2AOjAzN8xc6262yIoBoHgMlbvD4DeAH5Sd/sewDWxGaGCGABCrOgAYKfu+S512wQA/yKinQCeBfCw+0MTbLhXdS9PI6LQxPqFiEJEXQCcAmCx4aXbAXzt+oAEHwzvz1oAl6svXQffMnbXEQNAiBVmrVoYwN0Afs/MnQD8HsBUV0cl2PEygO4ABgIoBvBcTEcjgIgaA/gEwARmPqLb/mcAtQDejdXYBNP353YA44loGYBsANWxHJ8YAEKssBJxuhXADHXbR1BCBUIcwMz7mLmOmT0AXoW8NzGFiFKhTC7vMvMM3fZbAVwK4FcsSV4xw+z9YeYCZj6fmQcDmA5gcyzHKAaAECuWAuhJRF2JKA3AjQC+gGIEnK3uMxrAphiNTzCgJjZpXIXQ+2oIYUJKD9ypADYw87912y8E8BCAy5n5eKzG19CxeX9aq49JAB4FMDk2I1THIwaiECvULP//oF7E6SkiOgPAf6GIVFUCuIeZl8VulA0TIpoOYCSAlgD2Afir+nwglFDNNgB3MXNxTAbYwFG/Jz8DWAPAo25+BMD/AKQDKFW3LWLmce6PsGFj8/70BDBefT4DwMOx9NKIASAIgiAIDRAJAQiCIAhCA0QMAEEQBEFogIgBIAiCIAgNEDEABEEQBKEBIgaAIAiCIDRAxAAQBEEQhAaIGACCIAiC0AARA0AQBEEQGiBiAAiCIAhCA0QMAEEQBEFogIgBIAiCIAgNEDEABEEQBKEBIgaAIAiCIDRAxAAQBEEQhAaIGACCIAiC0AARA0AQBEEQGiAJaQAQ0dFYj0EQBEEQEpmENAAEQRAEQQiPhDUAiGgkEX2le/4iEY1Vf99GRH8jouVEtIaIcmM2UEEQBEGIQxLWAHBACTMPAvAygPtjPRhBEARBiCdOZANghvq4DECXGI5DEARBEOKORDYAauE7/gzD61XqYx2AFFdGJAiCIAgJQiIbANsB9CGidCJqCuCcWA9IEARBEBKFhFsZE1EKgCpm3klEHwJYDWATgBWxHZkgCIIgJA7EzLEeQ1AQ0ckAXmXmYbEeiyAIgiAkKgkVAiCicQCmA3g01mMRBEEQhEQm4TwAgiAIgiCET0J5AARBEARBiAxxZQAQUScimktEG4hoHRHdp27PIaLviWiT+thc3X4eES1T1f6WEdFo3bkGq9uLiOh/RESx+rsEQRAEId6IKwMASm3/H5k5D8AIAOOJqA+APwGYzcw9AcxWnwNACYDLmLk/gFsBvK0718sA7gTQU/250J0/QRAEQRDin7gyAJi5mJmXq7+XA9gAoAOAKwC8qe72JoAr1X1WMPMedfs6ABmqLkA7AE2YeSErSQ5vaccIgiAIghBnBoAeIuoC4BQAiwG0YeZiQDESALQ2OeQaACuYuQqK0bBL99oudZsgCIIgCIhTISAiagzgEwATmPlIoPA9EfUFMBHA+domk92k3EEQBEEQVOLOA0BEqVAm/3eZWWvos09160N93K/bvyOATwHcwsyb1c27AHTUnbYjgD0QBEEQBAFAnBkAaqb+VAAbmPnfupe+gJLkB/Xxc3X/ZgBmAniYmX/RdlbDBOVENEI95y3aMYIgCIIgxJkQEBGdAeBnAGsAeNTNj0DJA/gQQGcAOwBcx8wHiehRAA9D6QWgcT4z7yeiIQDeAJAJ4GsAv+N4+mMFQRAEIYbElQEgCIIgCII7xFUIQBAEQRAEdxADQBAEQRAaIGIACIIgCEIDRAwAQRAEQWiAiAEgCIIgCA0QMQAEQRAEoQEiBoAgCIIgNED+H5oi9YaJY/3nAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "axes = df[['ghi_0','dni_0','dhi_3','temp_air_1','wind_speed_1']].plot(\n", " subplots=True, legend=False, rot=0, figsize=(8,8), sharex=True)\n", "\n", "# Set y-labels and y-limits\n", "axes[0].set_ylabel('GHI [W/m$^2$]'), axes[0].set_ylim(-10,1400)\n", "axes[1].set_ylabel('DNI [W/m$^2$]'), axes[1].set_ylim(-10,1400)\n", "axes[2].set_ylabel('DHI [W/m$^2$]'), axes[2].set_ylim(-10,1400)\n", "axes[3].set_ylabel('Temperature [°]'), axes[3].set_ylim(0,40)\n", "_ = axes[4].set_ylabel('Wind\\nspeed [m/s]'), axes[4].set_ylim(0,15)" ] }, { "cell_type": "markdown", "metadata": { "tags": [ "remove-cell" ] }, "source": [ "## To do\n", "* Also plot the low-quality stations (ask Josh if they have a list of stations)\n", "* Refer to a list of station acronyms, e.g, HE" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 4 }